神经网络-SGD-2

接上节:

3、梯度(gradient):

def numerical_gradient(f,x):

  h=1e-5

  grad=np.zeros_like(x)

  for index_x in range(x.size):

    tmp=x[index_x]

    x[index_x]=tmp+h

    fxh1=f(x)

    x[index_x]=tmp-h

    fxh2=f(x)

    grad[idx]=(fxh1-fxh2)/(2*h)

    x[index_x]=tmp

  return grad

 

转载于:https://www.cnblogs.com/Dai-py/p/10636782.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值