冲冲冲@chong
码龄4年
关注
提问 私信
  • 博客:37,536
    37,536
    总访问量
  • 32
    原创
  • 1,394,346
    排名
  • 11
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2021-04-13
博客简介:

m0_57190374的博客

查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得5次评论
  • 获得205次收藏
  • 代码片获得472次分享
创作历程
  • 9篇
    2023年
  • 23篇
    2022年
成就勋章
TA的专栏
  • 笔记
    16篇
  • 机器学习笔记
    4篇
兴趣领域 设置
  • Python
    python
  • 数据结构与算法
    算法
  • 后端
    mysql后端
  • 人工智能
    opencv计算机视觉深度学习神经网络自然语言处理
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

atomoic及其六个内存顺序

Atomic 是C++中的一种原子类型,也称为原子操作。它是一种不可分割的操作,可以确保多个线程同时对同一个共享变量的操作是安全的。Atomic的功能涵盖了多种操作,例如读取、更新、交换、加减等,可以确保这些操作在多线程环境中是原子性的,也就是说,操作不会被中断或改变。六个内存顺序: 1. memory_order_relaxed:不执行任何内存顺序约束,最灵活,但也最不安全。 2. memory_order_acquire:发生在acquire之前的任何操作,对acquire
原创
发布博客 2023.04.25 ·
784 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux下配置MySQL数据库的配置文件/etc/mysql/my.cnf报错

打开my.cnf发现里面内容为空,指向:conf.d和mysql.conf.d;vim /etc/mysql/my.cnf修改配置文件;重启mysql即可。
原创
发布博客 2023.04.14 ·
1331 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

序列式容器/配接器:heap、priority queue、slist

1、heap是组成priority queue的组件,底层由complete binary tree(完全二叉树)组成,可由vector和一些heap算法实现为完全二叉树的形式。分为max-heap和min-heap 。 max-heap:每个节点的键值大于或等于其子节点的键值。 min-heap:每个节点的键值小于等于其子节点的键值。 2、priority queue :底层为其它容器实现,是一种配接器。与queue不同的是它带有权重观念,其元素自动依照权值从大到
原创
发布博客 2023.04.05 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux 笔记

mkdir -p 路径;一次创建多层不存在的目录 mkdir -p -/a/b/c。home:除了root用户以外的其它用户的家目录,类似于windows的user。预处理:对输入文件预处理:g++ - E test.cpp -o test.i。编译:产生汇编语言文件 : g++ -S test.i -o test.s。汇编:编译源代码为机器语言:g++ -C test.s -o test.o。ls 相对路径:ls ./表示当前目录下;链接:产生可执行的文件名:g++ test.o -o test。
原创
发布博客 2023.03.12 ·
130 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP学习笔记:Attention

具体实现:在seq2seq的编码器中将每个时刻的隐藏状态ht汇总为hs传入解码器,然后在解码器中添加Attention层,该层负责把编码器中传进来的对应时刻的ht选出来标记为上下文向量c;两个LSTM层按相反方向传递隐藏状态,最后将各个时刻两层LSTM的隐藏状态向量拼接(求和、取平均也可以)起来,作为最终隐藏状态向量。跨层连接时,在连接处两个输出被相加,加法的反向传播,梯度被原样传播,不会出现梯度消失或爆炸。h为解码器中LSTM层的输出,h*hs为内积计算hs中个行向量与h的相似度。
原创
发布博客 2023.02.09 ·
155 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP学习笔记:seq2seq

Peeky(偷窥),将编码器输出的隐藏状态信息h分配给解码器所有的LSTM和Affine层,加入Peeky后模型参数增加带来计算量的负担。根据概率分布进行概率性的选择(概率性的方法)。生成单词的语言模型-->获得单词的概率分布-->根据概率分布采样下一个出现的单词。:反转输入数据(直观的认为反转数据后反向传播梯度更加平滑)。机器翻译、自动摘要、问答系统、邮件自动回复、图像自动描述等。,seq2seq(从一个时序到另一个时序的神经网络)。根据已经出现的单词输出下一个出现的单词的概率分布。
原创
发布博客 2023.02.09 ·
163 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP学习笔记:GateRNN

反向传播矩阵连乘);控制下一隐藏层 ht 的输出:o=sigmoid(x*Wx+h(t-1)*Wh+b)。控制记忆单元ct 遗忘不必要的信息:f=sigmoid(x*Wx+h(t-1)*Wh+b)。输入C(t-1)和h(t-1)经过tanh或者Sigmoid函数转换计算向下层输出ht,向下一LSTM输入ht和ct。将输入门i和记忆单元g的乘积添加到上一记忆单元c(t-1);记忆单元反向传播为矩阵的对应元素乘积,每次都基于不同的门值进行对应元素的乘积。
原创
发布博客 2023.02.09 ·
268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLP学习笔记:RNN

被截断的BPTT(时序数据过长时,反向传播梯度消失以及计算量过大,因此将网络截断为小型网络,正向传播不变,反向被截断);将xs(x0,x1,...xT-1)捆绑为输入,hs(h0,h1,...hT-1)捆绑为输出,一次处理T步的RNN。给出单词序列发生的概率(基于给定的已经出现的单词的信息输出将要出现的单词的概率分布)困惑度(或分叉度,简单理解为概率的倒数,困惑度越高语言模型越差),分叉度指下一个可能出现的单词的候选个数)。行方向保存样本数据;输入多个数据时其平均损失L,其平均困惑度为exp(L)。
原创
发布博客 2023.02.09 ·
139 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习笔记:第4章 决策树

生成结点node(1)当前结点包含的样本属于同一类别无需划分,直接返回该类型。(2)当前样本属性集为空,或是所有样本在所有属性上取值相同,无法划分,将其叶结点标记为样本最多的类别。
原创
发布博客 2023.01.28 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习笔记:第3章 线性模型

线性回归、对数几率回归、线性判别分析、多分类的拆分。
原创
发布博客 2022.12.26 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习笔记:第2章 模型评估与选择

基于自助采样法,每次从m个样本的数据集D中,进行有放回的随机采样 1个样本拷贝到d中,进行m次操作后得到含有m个样本的d作为训练集,d中未出现的D中的样本作为测试集,评估模型的泛化误差。将D划分为k个互斥的子集,每次使用k-1个子集的并集作为训练集S,剩余1个为测试集,从而获得k组训练集/测试集,进行k次训练和验证,最终返回k次的平均值。模型预测正例正确的样本数TP(真正例),占模型预测为正例的样本数(TP+FP)的比例:P=TP/(TP+FP)经验误差/训练误差:学习器在训练集上的误差。
原创
发布博客 2022.12.10 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习笔记:第1章 机器学习发展史

R.S.Michalski等人(1983)将机器学习划分为:从样例中学习、在问题求解和规划中学习、通过观察和发现学习、从指令中学习等种类。E.A.Feigenbaum等人(1983)把机器学习划分为:机械学习、示教学习、归纳学习、类比学习等种类。NFL(没有免费的午餐理论):在所有问题出现机会均等、或所有问题同等重要的前提下任何算法的期望性能都相同。20世纪80年代符号主义学习:决策树和基于逻辑的学习(归纳逻辑程序设计)。
原创
发布博客 2022.12.09 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自然语言处理:有关单词含义理解、word2vec单词分布式表示的总结

单词含义的三种理解方式、单词分布式假设、word2vec及其高速化的理解
原创
发布博客 2022.11.24 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow常见的抑制过拟合方法:数据增强、Dropout、BatchNormalization、正则化

Tensorflow常见的抑制过拟合方法:数据增强、Dropout、BatchNormalization、正则化
原创
发布博客 2022.10.24 ·
954 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

应用 Tensorflow 进行花卉识别(flower_recognition)

应用Tensorflow构建简单网络进行花卉识别(flower_recognition)
原创
发布博客 2022.10.24 ·
1206 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

神经网络训练常见防止过拟合方法以及Tensorflow中的具体实现

神经网络训练常见防止过拟合方法(添加权重正则化、Dropout层、Batch Normallization、数据增强)以及Tensorflow中的具体实现
原创
发布博客 2022.10.14 ·
819 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【使用 jupyter notebook 进行网络训练时显存不足,设置GPU占用率】

使用jupyter notebook进行网络训练时显存不足,设置GPU占用率
原创
发布博客 2022.10.13 ·
2450 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【神经网络中:常见的几种参数更新方法(SGD、Momentum、AdaGrad、Adam、RMSProp、Adadelta)权值初始值、Batch Norm、过拟合、抑制过拟合】

神经网络中:常见的几种参数更新方法(SGD、Momentum、AdaGrad、Adam、RMSProp、Adadelta)权值初始值、Batch Norm、过拟合、抑制过拟合
原创
发布博客 2022.10.06 ·
3681 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

神经网络的学习(训练):损失函数(均方误差、交叉熵误差)

神经网络的学习(训练):损失函数(均方误差、交叉熵误差)
原创
发布博客 2022.10.06 ·
1092 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

tf.keras.utils.image_dataset_directory()预处理数据,进行模型训练以石头、剪刀、布(rock-scissors-paper)手势数据为例

tf.keras.utils.image_dataset_directory()预处理数据,tf.data.Dataset.take()显示训练数据前几张图像,进行模型训练,以石头、剪刀、布(rock-scissors-paper)手势数据为例。
原创
发布博客 2022.10.03 ·
3399 阅读 ·
1 点赞 ·
0 评论 ·
15 收藏
加载更多