大数运算

首先是java的BigInter类的大数运算:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package big_shu_yunsuan;
import java.util.*;
import java.math.*;
public class Main{
    public static void main(String args[]){
       Scanner cin = new Scanner(System.in);
       BigInteger a, b;  //声明两个大整数变量
       
       //以文件EOF结束
       while (cin.hasNext()){
           a = cin.nextBigInteger();
           b = cin.nextBigInteger();
   		   BigInteger bi1 = new BigInteger("123456789") ;	// 声明BigInteger对象;还可以这样声明
   		
           System.out.println(a.add(b)); //大整数加法;a+b
           System.out.println(a.subtract(b)); //大整数减法;a-b
           System.out.println(a.multiply(b)); //大整数乘法; a*b
           System.out.println(a.divide(b)); //大整数除法(取整);  a/b
           System.out.println(a.remainder(b)); //大整数取模
           System.out.println(a.mod(b));//取余
           System.out.println(a.gcd(b));//最大公约数GCD
           System.out.println(a.abs());//取绝对值
           System.out.println(a.negate());//取反
           System.out.println(a.max(b));//取最大值
           System.out.println(a.min(b));//取最小值
           System.out.println(a.equals(b));  //是否相等
           
           //大整数的比较
           if( a.compareTo(b) == 0 ) System.out.println("a == b"); //大整数a==b
           else if( a.compareTo(b) > 0 ) System.out.println("a > b"); //大整数a>b
           else if( a.compareTo(b) < 0 ) System.out.println("a < b"); //大整数a<b
           
           //大整数绝对值
           System.out.println(a.abs()); //大整数a的绝对值
           
           //大整数的幂
           int exponent=10;
           System.out.println(a.pow(exponent)); //大整数a的exponent次幂
           
           //返回大整数十进制的字符串表示
           System.out.println(a.toString());
           
           //返回大整数p进制的字符串表示
           int p=8;
           System.out.println(a.toString(p));
       }
    }
}

其次就是关于取模和取余的区别:
通常取模运算也叫取余运算,它们返回结果都是余数 .rem 和 mod 唯一的区别在于:
当 x 和 y 的正负号一样的时候,两个函数结果是等同的;当 x 和 y 的符号不同时,rem 函数结果的符号和 x 的一样,而 mod 和 y 一样。
这是由于这两个函数的生成机制不同,rem 函数采用 fix 函数,而 mod 函数采用了 floor 函数(这两个函数是用来取整的,fix 函数向 0 方向舍入,floor 函数向无穷小方向舍入)。 rem(x,y)命令返回的是 x-n.y,如果 y 不等于 0,其中的 n = fix(x./y),而 mod(x,y) 返回的是 x-n.y,当 y 不等于 0 时,n=floor(x./y)

求法:先将两个整数看作是正数,再作除法运算:
1、能整除时,其值为 0
2、不能整除时,其值=除数×(整商+1)-被除数 (在算的时候都不用考虑结果,只在最后结果取符号的时候看被除数或者除数的符号。)
例: mod(36,-10)=-4 ;即:36 除以 10 的整数商为 3,加 1 后为 4;其与除数之积为 40;再与被除数之差为(40-36=4);取除数的符号。所以值为 -4。
例: rem(36,-10)=4 ;即:36 除以 10 的整数商为 3,加 1 后为 4;其与除数之积为 40;再与被除数之差为(40-36=4);取被除数的符号。所以值为 4。

对于整数 a,b 来说,取模运算或者求余运算的方法要分如下两步:
1、求整数商:c=a/b
2、计算模或者余数:r=a-(c×b) ;此时c为舍弃小数位后的值
求模运算和求余运算在第一步不同
取余运算在计算商值向0方向舍弃小数位
取模运算在计算商值向负无穷方向舍弃小数位

例如:4/(-3) 约等于 -1.3
在取余运算时候商值向 0 方向舍弃小数位为 -1
在取模运算时商值向负无穷方向舍弃小数位为-2
所以
4rem(-3)=1
4mod(-3)=-2

  • java的BigDecimal(多位小数)

upload successful

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package ustc.lichunchun.bigdataapi;
 
import java.math.BigDecimal;
 
public class BigDecimalDemo01 {
 
	public static void main(String[] args) {
		System.out.println("加法运算:" + MyMath.round(MyMath.add(10.345,3.333),1)) ;
		System.out.println("减法运算:" + MyMath.round(MyMath.sub(10.345,3.333),3)) ;
		System.out.println("乘法运算:" + MyMath.round(MyMath.mul(10.345,3.333),4)) ;
		System.out.println("除法运算:" + MyMath.div(10.345,3.333,3)) ;
	}
}
class MyMath{
	public static double add(double d1,double d2){		// 进行加法计算
		BigDecimal b1 = new BigDecimal(d1) ;
		BigDecimal b2 = new BigDecimal(d2) ;
		return b1.add(b2).doubleValue() ;
	}
	public static double sub(double d1,double d2){		// 进行减法计算
		BigDecimal b1 = new BigDecimal(d1) ;
		BigDecimal b2 = new BigDecimal(d2) ;
		return b1.subtract(b2).doubleValue() ;
	}
	public static double mul(double d1,double d2){		// 进行乘法计算
		BigDecimal b1 = new BigDecimal(d1) ;
		BigDecimal b2 = new BigDecimal(d2) ;
		return b1.multiply(b2).doubleValue() ;
	}
	public static double div(double d1,double d2,int len){		// 进行除法计算
		BigDecimal b1 = new BigDecimal(d1) ;
		BigDecimal b2 = new BigDecimal(d2) ;
		return b1.divide(b2,len,BigDecimal.ROUND_HALF_UP).doubleValue() ;
	}
	public static double round(double d,int len){	// 进行四舍五入
		BigDecimal b1 = new BigDecimal(d) ;
		BigDecimal b2 = new BigDecimal(1) ; // 技巧
		return b1.divide(b2,len,BigDecimal.ROUND_HALF_UP).doubleValue() ;
	}
};




/*

tips:
1. round() 方法返回一个最接近的 int、long 型值,四舍五入。
round 表示"四舍五入",算法为Math.floor(x+0.5) ,即将原来的数字加上 0.5 后再向下取整,所以 Math.round(11.5) 的结果为 12,Math.round(-11.5) 的结果为 -11。

2. public BigDecimal divide(BigDecimal divisor,int scale, int roundingMode)
    第一个参数是除数,第二个参数代表保留几位小数,第三个代表的是使用的模式。

其中第三个参数的模式有:
	BigDecimal.ROUND_DOWN:直接省略多余的小数,比如1.28如果保留1位小数,得到的就是1.2
    BigDecimal.ROUND_UP:直接进位,比如1.21如果保留1位小数,得到的就是1.3
    BigDecimal.ROUND_HALF_UP:四舍五入,2.35保留1位,变成2.4
    BigDecimal.ROUND_HALF_DOWN:四舍五入,2.35保留1位,变成2.3
    
3. doubleValue() 方法把BigDecimal转化成Double类型的对象,相应的可以把Integer和String类型的转换为double类型。
*/
关于c语言中的__int128类型

关于int128的介绍(可用于1e18以上的数的运算):
128位的int类型的数,官方上写了GCC提供了两种128位整数类型,分别是
int128_t和__uint128_t,分别用于声明有符号整数变量和无符号整数变量。
由于这种大整数无法使用函数printf()输出其值,所以自己做了一个整数转字符串函数myitoa(),用于实现128位整数的输出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
实现大整数的输出   
#include <iostream>
using namespace std;
void myitoa(__int128_t v, char* s)
{
    char temp;
    int i=0, j;

    while(v >0) {
        s[i++] = v % 10 + '0';
        v /= 10;
    }
    s[i] = '\0';

    j=0;
    i--;
    while(j < i) {
        temp = s[j];
        s[j] = s[i];
        s[i] = temp;
        j++;
        i--;
    }
}

int main()
{
    __uint128_t n = 0;

    n = ~n;
    int count = 0;
    while(n > 0) {
        count++;
        n >>= 1;
    }

    cout << "count=" << count << endl;
    cout << "__uint128_t size=" << sizeof(__uint128_t) << endl;
    cout << endl;
    cout << "__int128_t size=" << sizeof(__int128_t) << endl;
    __int128_t x = 1100000000000000L;
    __int128_t y = 2200000000000000L;
    char s[40];
    x *= y;
    myitoa(x, s);
    cout << "x=" << s << endl;
    return 0;
}
结果
count=128  
__uint128_t size=16  
  
__int128_t size=16  
x=2420000000000000000000000000000

其中可以用于大数运算a+b

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <bits/stdc++.h>
using namespace std;
inline __int128 read()
{
    __int128 x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}

inline void write(__int128 x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
        write(x/10);	//递归输出
    putchar(x%10+'0');
}

int main()
{
    __int128 a = read();
    __int128 b = read();
    write(a + b);
    return 0;
}
c++大数运算 算法笔记板子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
//高精度运算
#include<iostream>
#include<string.h> 
using namespace std;
struct bign{
	int d[1000];
	int len;
	bign(){
		memset(d,0,sizeof(d));
		len=0;
	}
};
bign change(char str[]){//将str的整数转为bign 
	bign a;
	a.len=strlen(str);
	for(int i=0;i<a.len;i++){
		a.d[i]=str[a.len-i-1]-'0';//逆着赋值 
	}
	return a;
}
int compare(bign a,bign b){
	if(a.len>b.len)return 1;//a大 
	else if(a.len<b.len)return -1;//a小 
	else {
		for(int i=a.len-1;i>=0;i--){//因为从d的0坐标开始存 
			if(a.d[i]>b.d[i])return 1;
			else if(a.d[i]<b.d[i])return -1;
		}
		return 0;//相等 
	}
} 
bign add(bign a,bign b){
	bign c;
	int carry=0;
	for(int i=0;i<a.len||i<b.len;i++){//以较长的作为界限 
		int temp=a.d[i]+b.d[i]+carry;
		c.d[c.len++]=temp%10;
		carry=temp/10;
	}
	if(carry!=0){
		c.d[c.len++]=carry;//新增一位 
	}
	return c;
}
bign sub(bign a,bign b){
	bign c;
	for(int i=0;i<a.len||i<b.len;i++){
		if(a.d[i]<b.d[i]){
			a.d[i+1]--;//不够减,向高位借 
			a.d[i]+=10;
		}
		c.d[c.len++]=a.d[i]-b.d[i];//计算结果储存起来 
	}
	while(c.len-1>=1&&c.d[c.len-1]==0){
		c.len--;//取出高为的0,并且保留最低位的0 
	}
	return c; 
}
bign multi(bign a,int b){
	bign c;
	int carry;//进位
	for(int i=0;i<a.len;i++){
		int temp=a.d[i]*b+carry;
		c.d[c.len++]=temp%10;
		carry=temp/10;
	} 
	while(carry!=0){//乘法的进位可能不止一位 
		c.d[c.len++]=carry%10;
		carry/=10;
	} 
	return c;
}
bign divide(bign a,int b,int &r){//r为余数
	bign c;
	c.len=a.len;
	for(int i=a.len-1;i>=0;i--){//从高为开始除 
		r=r*10+a.d[i];
		if(r<b)c.d[i]=0;//不够除 
		else {//够除 
			c.d[i]=r/b;
			r=r%b;
		}
	} 
	while(c.len-1>=1&&c.d[c.len-1]==0){
		c.len--;
	}
	return c;
}
void print(bign a){
	for(int i=a.len-1;i>=0;i--){
			cout<<a.d[i];
	}
	cout<<endl;
}
int main(){
	char str1[1000],str2[1000];
	int r=0;
	int c=-2; 
	scanf("%s",str1);
	scanf("%s",str2);
	bign a=change(str1);
	bign b=change(str2);
	cout<<"a是否小于b"<<compare(a,b)<<endl;
	cout<<"a+b="; print(add(a,b)); 
	cout<<"a-b=";   if(compare(a,b)==1)print(sub(a,b));
					else print(sub(b,a)); 
	cout<<"a*c=";
	if(c<0){
		cout<<"-";print(multi(a,-c));		
	}else{
		print(multi(a,c));
	}
	cout<<"a/c=";if(c<0){
		cout<<"-";print(divide(a,-c,r));		
	}else{
		print(divide(a,c,r));
	}cout<<" 余数为:"<<r<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值