Codeforces Round #357 (Div. 2) -- D. Gifts by the List(DFS)

40 篇文章 1 订阅
D. Gifts by the List
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Sasha lives in a big happy family. At the Man's Day all the men of the family gather to celebrate it following their own traditions. There are n men in Sasha's family, so let's number them with integers from 1 to n.

Each man has at most one father but may have arbitrary number of sons.

Man number A is considered to be the ancestor of the man number B if at least one of the following conditions is satisfied:

  • A = B;
  • the man number A is the father of the man number B;
  • there is a man number C, such that the man number A is his ancestor and the man number C is the father of the man number B.

Of course, if the man number A is an ancestor of the man number B and A ≠ B, then the man number B is not an ancestor of the man number A.

The tradition of the Sasha's family is to give gifts at the Man's Day. Because giving gifts in a normal way is boring, each year the following happens.

  1. A list of candidates is prepared, containing some (possibly all) of the n men in some order.
  2. Each of the n men decides to give a gift.
  3. In order to choose a person to give a gift to, man A looks through the list and picks the first man B in the list, such that B is an ancestor of A and gives him a gift. Note that according to definition it may happen that a person gives a gift to himself.
  4. If there is no ancestor of a person in the list, he becomes sad and leaves the celebration without giving a gift to anyone.

This year you have decided to help in organizing celebration and asked each of the n men, who do they want to give presents to (this person is chosen only among ancestors). Are you able to make a list of candidates, such that all the wishes will be satisfied if they give gifts according to the process described above?

Input

In the first line of the input two integers n and m (0 ≤ m < n ≤ 100 000) are given — the number of the men in the Sasha's family and the number of family relations in it respectively.

The next m lines describe family relations: the (i + 1)th line consists of pair of integers pi and qi (1 ≤ pi, qi ≤ n, pi ≠ qi) meaning that the man numbered pi is the father of the man numbered qi. It is guaranteed that every pair of numbers appears at most once, that among every pair of two different men at least one of them is not an ancestor of another and that every man has at most one father.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n), ith of which means that the man numbered i wants to give a gift to the man numbered ai. It is guaranteed that for every 1 ≤ i ≤ n the man numbered ai is an ancestor of the man numbered i.

Output

Print an integer k (1 ≤ k ≤ n) — the number of the men in the list of candidates, in the first line.

Print then k pairwise different positive integers not exceeding n — the numbers of the men in the list in an order satisfying every of the men's wishes, one per line.

If there are more than one appropriate lists, print any of them. If there is no appropriate list print  - 1 in the only line.

Examples
Input
3 2
1 2
2 3
1 2 1
Output
-1
Input
4 2
1 2
3 4
1 2 3 3
Output
3
2
1
3
Note

The first sample explanation:

  • if there would be no 1 in the list then the first and the third man's wishes would not be satisfied (a1 = a3 = 1);
  • if there would be no 2 in the list then the second man wish would not be satisfied (a2 = 2);
  • if 1 would stay before 2 in the answer then the second man would have to give his gift to the first man, but he wants to give it to himself (a2 = 2).
  • if, at the other hand, the man numbered 2 would stay before the man numbered 1, then the third man would have to give his gift to the second man, but not to the first (a3 = 1).d


大体题意:

一个家庭聚会,每个人都想送出礼物,送礼规则是  一个人 先看名单列表,发现第一个祖先 就会送给他礼物,然后就不送了,如果他没找到礼物 他会伤心的离开聚会!告诉你m个祖先关系,和每个人想给谁送!让你求出名单列表!

注意  自己是自己的祖先。

思路:

想一想规则可以知道:  如果祖先关系是 D - > C -> B -> A 那么如果A想给D送礼物,那么BC也必须给D送礼物 如果B 送给C  那么B第一个找到的祖先是C  A也应该送给C这就矛盾了!也就是说只要 A想送的礼物和祖先一样或者送给自己就可以了!

dfs整体思路可以这样想:

先遍历祖先,遍历自己的儿子,当发现自己送的礼物对象不和祖先一样 并且是不送给自己的话 就可以输出-1了。

遍历到最后 ,也是第一个祖先的最后一个后代,如果他想送给自己的话 便记录答案,因为必须优先考虑送给自己,如果是送给祖先,那么答案记录便由上一个dfs(祖先)记录!

详细见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 100000 + 10;
vector<int>g[maxn],ans;
int d[maxn],a[maxn];
bool ok = true;
void dfs(int k,int fa){
    if (!ok)return ;
    int len = g[k].size();
    for (int i = 0; i < len; ++i){
        int u = g[k][i];
        if (u == fa)continue;
        if (a[u] != a[k] && a[u] != u)ok=false;
        dfs(u,k);
    }
    if (a[k] == k)ans.push_back(k);
}
int main(){
    int n,m;
    scanf("%d %d",&n,&m);
    for (int i = 0; i < m; ++i){
        int a,b;
        scanf("%d %d",&a,&b);
        g[a].push_back(b);
        g[b].push_back(a);
        d[b]++;
    }
    for (int i = 1; i <= n; ++i)scanf("%d",&a[i]);
    for (int i = 1; i <= n; ++i){
        if (!d[i])dfs(i,-1);
    }
    if (!ok){
        printf("-1\n");
        return 0;
    }
    int len = ans.size();
    printf("%d\n",len);
    for (int i = 0; i < len; ++i){
        printf("%d\n",ans[i]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值