多项式分布的理解概率公式的理解

多项式分布是二项分布的推广。二项分布(也叫伯努利分布)的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。而多项分布就像扔骰子,有6个面对应6个不同的点数。二项分布时事件X只有2种取值,而多项分布的X有多种取值,多项分布的概率公式为  


 这个公式看上去像是莫名其妙地冒出来的,想要了解它首先必须要知道组合数学中的多项式定理。

多项式定理:当n是一个正整数时,我们有  


 其中 

这个多项式定理的推导如下,将式子左边展开


上面的式子是由n个因子相乘得到,而它的展开式可以看做在每个式子里选取某一个xi,总共选取n个xi相乘,所以所有的展开式项都会有


这样的公有项,而且

这样的话,我们可以把问题看成在n个式子里,先选取r1个x1,然后选取r2个x2,最后选取rk个xk,然后求有多少种方法。类似把n 个球放到k个不同的盒子里的方法有多少种,我们得到 


所以的系数为,这样,我们就能得到展开式的通式。举个例子,当k=2时,我们就得到了常见的二项式公式:


再来看之前的多项分布的概率公式,假设发生的概率为,由于事件之间是相互独立的,可得

我们将式子的左边看做一次抽样各种事件发生的概率和,那么则是进行了n次抽样所有事件相互组合的对应概率和。把这个多项式展开,它的每一项都对应着一个特殊事件的出现概率。我们把展开式的通项作为X1出现x1次,X2出现x2次,…,Xk出现xk次的这种事件的出现概率,这样就得到了多项分布的概率公式。

转自:http://www.crescentmoon.info/?p=9#more-9


多项式逻辑回归是逻辑回归的一种扩展,它允许非线性关系建模。公式推导过程如下: 假设我们有一个二分类问题,输入特征为 x,输出为 y,我们想要建立一个多项式逻辑回归模型。 1. 首先,我们假设存在一个函数 h(x),该函数可以将输入特征 x 映射到一个连续的实数域上。这个函数 h(x) 通常被称为决策函数或者假设函数。 2. 定义 sigmoid 函数 g(z) = 1 / (1 + e^(-z)),其中 z 是一个实数。sigmoid 函数的值域在 (0, 1) 之间。 3. 对于二分类问题,我们可以将输出 y 理解为在类别 1 的概率,即 P(y = 1 | x)。因此,我们可以将决策函数 h(x) 的输出通过 sigmoid 函数进行映射,得到 P(y = 1 | x)。 4. 假设我们想要建立一个 k 阶的多项式逻辑回归模型,我们可以将输入特征 x 按照多项式的形式进行扩展。例如,当 k = 2 时,我们可以构造出以下特征组合:[1, x, x^2]。 5. 假设我们有 m 组训练样本,每个样本的特征表示为 x^(i) = [1, x^(i), (x^(i))^2, ..., (x^(i))^k],其中 i 表示第 i 组训练样本。 6. 我们可以通过最大似然估计来求解模型参数。假设我们的训练集标签为 y^(i),我们可以定义似然函数 L(θ) = ∏(i=1->m) P(y^(i) | x^(i); θ),其中 θ 表示模型的参数。 7. 对于二分类问题,似然函数可以写成 L(θ) = ∏(i=1->m) (g(θ^T * x^(i)))^(y^(i)) * (1 - g(θ^T * x^(i)))^(1 - y^(i))。 8. 我们的目标是最大化似然函数,即求解使得 L(θ) 最大化的参数 θ。通常我们会使用梯度下降等优化算法来求解最优参数。 以上就是多项式逻辑回归公式推导的基本过程。通过将输入特征进行多项式扩展,我们可以更灵活地建模非线性关系。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值