数据结构:二叉查找树(BST)

定义:又叫二叉搜索树,它是一种特殊的二叉树,如果它的任意节点的左右节点存在,则它的左子树均小于这个节点,右节点均大于这个节点二叉搜索树

代码实现

  1. 定义这个树的属性
public class BSTree<T extends Comparable<T>> {

   private BSTNode<T> mRoot;    // 根结点

   public class BSTNode<T extends Comparable<T>> {
       T key;                // 关键字(键值)
       BSTNode<T> left;      // 左孩子
       BSTNode<T> right;     // 右孩子
       BSTNode<T> parent;    // 父结点

       public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
           this.key = key;
           this.parent = parent;
           this.left = left;
           this.right = right;
       }
   }

       ......
}
  1. 每一个二叉搜索树都是依靠头结点来为线索来连接整棵树 的

  2. 主要方法思路:
    查找:传入头结点,和要查找的值,递归如果比当前节点的值小,则要查找的节点应该在该节点的左子树,如果不存在左子树,这该值不在这个二叉树上,返回null,如果比当前节点大,则这个值应该在右子树上,相等则返回这个节点。
    查找最大小值:最大值就是这颗树的最右边的节点,就是不断的进入当前节点的右子树,直到当前节点没有右子树,则这个节点就是最大值。最小值则不断进入左子树,直到没有左子树。
    前驱:前驱表示的是当前二叉树按照中序排列,当前节点的前一个节点,也就是说,当前节点的左子树中最大的那个数(这个数没有右子树节点,因为没有比这个节点更大的)
    代码实现:先判断是否有左子树,有的话,就查找它左子树中最大的值,这个值就是前驱节点。没有的话,判断这个节点有没有父节点,没有的话,当前节点就是根节点,所以他的前驱节点应为为null,如果点前节点是右子树节点,则他的父节点就是他的前驱节点。如果他是左子树节点,那么应该找他的父节点中,这个节点不在是他的父节点的左子树,找到了就返回这个节点的父节点,找不到返回null
    后继:跟前驱相反。
    插入:就是先查找合适的插入节点,就是不断的跟当前节点比较,如果比当前节点大,就看是否存有右子树,存在就继续比较,直到没有,就在当前位置插入。比当前位置小的话,就查左子树,不存在就插入
    删除:就是先获取要删除的节点,查看这个节点是否存在左右父节点,所以分三种情况(1)不存在左右节点,直接设置它的父节点的做或者右节点为null(2)存在左或者右节点中的一个,先拿到这个节点,设置这个节点的父节点为当前节点的父节点,设置当前节点的父节点的左或者右节点为这个节点。(3)存在两个子节点,所以查找当前节点的后继节点(中序遍历第一个值),先记录该节点,然后在这个位置删除这个节点(这节点一定没有左子节点,或者没有子节点,所以这个节点删除就变成情况一二),并将要最初要删除节点的值设置为记录节点的值。

  3. 具体代码实现:

/**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/

public class BSTree<T extends Comparable<T>> {

   private BSTNode<T> mRoot;    // 根结点

   public class BSTNode<T extends Comparable<T>> {
       T key;                // 关键字(键值)
       BSTNode<T> left;    // 左孩子
       BSTNode<T> right;    // 右孩子
       BSTNode<T> parent;    // 父结点

       public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
           this.key = key;
           this.parent = parent;
           this.left = left;
           this.right = right;
       }

       public T getKey() {
           return key;
       }

       public String toString() {
           return "key:"+key;
       }
   }

   public BSTree() {
       mRoot=null;
   }

   /*
    * 前序遍历"二叉树"
    */
   private void preOrder(BSTNode<T> tree) {
       if(tree != null) {
           System.out.print(tree.key+" ");
           preOrder(tree.left);
           preOrder(tree.right);
       }
   }

   public void preOrder() {
       preOrder(mRoot);
   }

   /*
    * 中序遍历"二叉树"
    */
   private void inOrder(BSTNode<T> tree) {
       if(tree != null) {
           inOrder(tree.left);
           System.out.print(tree.key+" ");
           inOrder(tree.right);
       }
   }

   public void inOrder() {
       inOrder(mRoot);
   }


   /*
    * 后序遍历"二叉树"
    */
   private void postOrder(BSTNode<T> tree) {
       if(tree != null)
       {
           postOrder(tree.left);
           postOrder(tree.right);
           System.out.print(tree.key+" ");
       }
   }

   public void postOrder() {
       postOrder(mRoot);
   }


   /*
    * (递归实现)查找"二叉树x"中键值为key的节点
    */
   private BSTNode<T> search(BSTNode<T> x, T key) {
       if (x==null)
           return x;

       int cmp = key.compareTo(x.key);
       if (cmp < 0)
           return search(x.left, key);
       else if (cmp > 0)
           return search(x.right, key);
       else
           return x;
   }

   public BSTNode<T> search(T key) {
       return search(mRoot, key);
   }

   /*
    * (非递归实现)查找"二叉树x"中键值为key的节点
    */
   private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
       while (x!=null) {
           int cmp = key.compareTo(x.key);

           if (cmp < 0) 
               x = x.left;
           else if (cmp > 0) 
               x = x.right;
           else
               return x;
       }

       return x;
   }

   public BSTNode<T> iterativeSearch(T key) {
       return iterativeSearch(mRoot, key);
   }

   /* 
    * 查找最小结点:返回tree为根结点的二叉树的最小结点。
    */
   private BSTNode<T> minimum(BSTNode<T> tree) {
       if (tree == null)
           return null;

       while(tree.left != null)
           tree = tree.left;
       return tree;
   }

   public T minimum() {
       BSTNode<T> p = minimum(mRoot);
       if (p != null)
           return p.key;

       return null;
   }
    
   /* 
    * 查找最大结点:返回tree为根结点的二叉树的最大结点。
    */
   private BSTNode<T> maximum(BSTNode<T> tree) {
       if (tree == null)
           return null;

       while(tree.right != null)
           tree = tree.right;
       return tree;
   }

   public T maximum() {
       BSTNode<T> p = maximum(mRoot);
       if (p != null)
           return p.key;

       return null;
   }

   /* 
    * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
    */
   public BSTNode<T> successor(BSTNode<T> x) {
       // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
       if (x.right != null)
           return minimum(x.right);

       // 如果x没有右孩子。则x有以下两种可能:
       // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
       // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
       BSTNode<T> y = x.parent;
       while ((y!=null) && (x==y.right)) {
           x = y;
           y = y.parent;
       }

       return y;
   }
    
   /* 
    * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
    */
   public BSTNode<T> predecessor(BSTNode<T> x) {
       // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
       if (x.left != null)
           return maximum(x.left);

       // 如果x没有左孩子。则x有以下两种可能:
       // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
       // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
       BSTNode<T> y = x.parent;
       while ((y!=null) && (x==y.left)) {
           x = y;
           y = y.parent;
       }

       return y;
   }

   /* 
    * 将结点插入到二叉树中
    *
    * 参数说明:
    *     tree 二叉树的
    *     z 插入的结点
    */
   private void insert(BSTree<T> bst, BSTNode<T> z) {
       int cmp;
       BSTNode<T> y = null;
       BSTNode<T> x = bst.mRoot;

       // 查找z的插入位置
       while (x != null) {
           y = x;
           cmp = z.key.compareTo(x.key);
           if (cmp < 0)
               x = x.left;
           else
               x = x.right;
       }

       z.parent = y;
       if (y==null)
           bst.mRoot = z;
       else {
           cmp = z.key.compareTo(y.key);
           if (cmp < 0)
               y.left = z;
           else
               y.right = z;
       }
   }

   /* 
    * 新建结点(key),并将其插入到二叉树中
    *
    * 参数说明:
    *     tree 二叉树的根结点
    *     key 插入结点的键值
    */
   public void insert(T key) {
       BSTNode<T> z=new BSTNode<T>(key,null,null,null);

       // 如果新建结点失败,则返回。
       if (z != null)
           insert(this, z);
   }

   /* 
    * 删除结点(z),并返回被删除的结点
    *
    * 参数说明:
    *     bst 二叉树
    *     z 删除的结点
    */
   private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
       BSTNode<T> x=null;
       BSTNode<T> y=null;

       if ((z.left == null) || (z.right == null) )
           y = z;
       else
           y = successor(z);

       if (y.left != null)
           x = y.left;
       else
           x = y.right;

       if (x != null)
           x.parent = y.parent;

       if (y.parent == null)
           bst.mRoot = x;
       else if (y == y.parent.left)
           y.parent.left = x;
       else
           y.parent.right = x;

       if (y != z) 
           z.key = y.key;

       return y;
   }

   /* 
    * 删除结点(z),并返回被删除的结点
    *
    * 参数说明:
    *     tree 二叉树的根结点
    *     z 删除的结点
    */
   public void remove(T key) {
       BSTNode<T> z, node; 

       if ((z = search(mRoot, key)) != null)
           if ( (node = remove(this, z)) != null)
               node = null;
   }

   /*
    * 销毁二叉树
    */
   private void destroy(BSTNode<T> tree) {
       if (tree==null)
           return ;

       if (tree.left != null)
           destroy(tree.left);
       if (tree.right != null)
           destroy(tree.right);

       tree=null;
   }

   public void clear() {
       destroy(mRoot);
       mRoot = null;
   }

   /*
    * 打印"二叉查找树"
    *
    * key        -- 节点的键值 
    * direction  --  0,表示该节点是根节点;
    *               -1,表示该节点是它的父结点的左孩子;
    *                1,表示该节点是它的父结点的右孩子。
    */
   private void print(BSTNode<T> tree, T key, int direction) {

       if(tree != null) {

           if(direction==0)    // tree是根节点
               System.out.printf("%2d is root\n", tree.key);
           else                // tree是分支节点
               System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

           print(tree.left, tree.key, -1);
           print(tree.right,tree.key,  1);
       }
   }

   public void print() {
       if (mRoot != null)
           print(mRoot, mRoot.key, 0);
   }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贝多芬也爱敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值