算是一道模拟题吧,,,此题就逆序数不用归并排序之类的,而是用双层for循环模拟求解,,因为题意中要求任意两个数交换位置,所以只需在双层for循环中模拟两个数交换即可,在模拟的过程中,不需要准确的求出模拟之后的逆序数,只需要考虑逆序数的变化量为多少,最后,求出变化量最小的,用最初的逆序数求得最后结果。。。
其中模拟两个数交换之后逆序数的变化量解法:
如下:
有
a,b,c,d,e,f,g,h,i,g,k,l,m.....; 一系列数。
假设我们求交换 d 和 l 的数,其逆序数的变化量。
数列将变为:
a,b,c,l,e,f,g,h,i,g,k,d,m.....;
我们先看,在 d 到 l 这一段数中,有多少个比 d 大的数,记为 cnt1 ,那么,将 d 交换之后, 这 cnt1 个数将会各增加1个比其本身小的数,则最终总的逆序数则加 cnt1 ;
我们在看,有多少个比 d 小的数,记为 cnt2 , 则 相对于 d 来说,最后少了 cnt2 个比 d 小的数, 则最后结果减 cnt2;
同理 对 l 进行一次与 d 相同的操作,则最后的结果变化量则为交换 d 与 l 的逆序数的变化量。
代码如下:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<algorithm>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#define INF 0x7fffffff
using namespace std;
int num[1002];
int z[1002][1002];//统计逆序数的变化量。
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(z,0,sizeof(z));
for(int i=0; i<n; i++)
{
scanf("%d",&num[i]);
}
int res=0;//求最初的逆序数
for(int i=0; i<n; i++)
{
int cnt=0;
for(int j=i+1; j<n; j++)
{
if(num[j]<num[i])
{
res++;//总的逆序数
cnt--;
}
else if(num[j]>num[i])
cnt++;
z[i][j]=cnt;//统计与第一个交换数比较后的逆序数变化量
}
}
for(int i=n-1; i>0; i--)
{
int cnt=0;
for(int j=i-1; j>0; j--)
{
if(num[j]<num[i])
cnt++;
else if(num[j]>num[i])
cnt--;
z[j-1][i]+=cnt;//加上与第二个交换数比较后的逆序数变化量
}
}
int m=0;//找到逆序数最小的变化量
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
m=m>z[i][j]?z[i][j]:m;
printf("%d\n",res+m);
}
}