Git常用命令总结

安装完成后:

git config --global user.name "Your Name"
git config --global user.email "email@example.com"
创建SSH Key:
ssh-keygen -t rsa -C "email"
将id_rsa.pub内容复制到github的SSH Keys中

常用简单命令
touch file                        //新建文件file
cat file                          //查看file内容
rm file                           //删除file
mkdir newfolder                   //新建文件夹newfolder
cd newfolder                      //进入newfolder
pwd                               //查看当前目录
echo "xxx" >/>> file              //‘>’添加并覆盖文件内容,‘>>’添加内容在文件尾          

Git简单命令
git init                          //初始化仓库
git add file                      //添加修改到仓库
git mv file_1 file_2              //修改文件名
git rm file                       //从仓库中删除文件
git commit -m "注释内容"           //提交修改到仓库
git status                        //查看仓库当前状态
git diff file                     //查看修改
git log                           //查看历史记录
git reset --hard HEAD^/commit_id  //版本回退
git reflog                        //查看历史命令(包含commit_id)
git checkout -- file              //撤销修改,file回到最近一次commit/add状态
git tag                           //列出已有标签
git tag -a commit_id        //为commit_id操作加标签
git branch [-d] dev               //新建分支dev,[-d]删除分支
git checkout dev                  //转到分支dev
git merge dev                     //当前分支与dev分支合并(若出现冲突,手动修改后 git commit -a)
git stash [list][pop]             //保存现场修改,[list]查看存储的现场,[pop]恢复并删除存储的现场                      



远程库命令
git remote add 名称 仓库url //添加远程仓库,可以代替仓库url

git remote set-url origin [url] //修改绑定的远程仓库url
git remote rename //重命名
git remote rm         //移除远程仓库
git remote -v                     //查看远程仓库的简写(origin)与其对应的仓库url
git fetch             //拉取远程仓库的内容
git pull              //拉取并合并远程仓库内容到本地当前分支
git push <远程主机名> <本地分支名>:<远程分支名>     //将本地分支内容推送到远程仓库的分支上



以上内容由本人整理,转载请注明出处

详细参考:https://git-scm.com/book/zh/v2

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值