题目描述
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排坐成一个 m m m 行 n n n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 ( 1 , 1 ) (1,1) (1,1),小轩坐在矩阵的右下角,坐标 ( m , n ) (m,n) (m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 0 0 表示),可以用一个 [ 0 , 100 ] [0,100] [0,100] 内的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。
题解
第一张纸条从左上角的小渊传到右下角的小轩,第二张纸条从右下角的小轩传给左上角的小渊,要求两次路径的好感度之和最大。
修改情景,方便 dp,同时不改变题目要求(两次好感值的和最大)。
修改后的情景:两次传递纸条,均从左上角的小渊到右下角的小轩。
四维状态转移方程:
f x 1 , y 1 , x 2 , y 2 = m a x ( f x 1 − 1 , y 1 , x 2 − 1 , y 2 , f x 1 − 1 , y 1 , x 2 , y 2 − 1 , f x 1 , y 1 − 1 , x 2 − 1 , y 2 , f x 1 , y 1 − 1 , x 2 , y 2 − 1 ) + m x 1 , y 1 + m x 2 , y 2 f_{x_1, y_1, x_2, y_2}=max(f_{x_1-1, y_1, x_2-1, y_2}, f_{x_1-1, y_1, x_2, y_2-1}, f_{x_1, y_1-1, x_2-1, y_2}, f_{x_1, y_1-1,x_2,y_2-1}) + m_{x_1, y_1} + m_{x_2, y_2} fx1,y1,x2,y2=max(fx1−1,y1,x2−1,y2,fx1−1,y1,x2,y2−1,fx1,y1−1,x2−1,y2,fx1,y1−1,x2,y2−1)+mx1,y1+mx2,y2
f
(
x
1
,
y
1
,
x
2
,
y
2
)
f(x1, y1, x2, y2)
f(x1,y1,x2,y2) 表示:两次从小渊到小轩,纸条在(x1, y1)
和(x2, y2)
时,与左上角小渊的路径之间的最大的好感度之和。
三维状态转移方程:
f s t e p , x 1 , x 2 = m a x ( f s t e p − 1 , x 1 , x 2 , f s t e p − 1 , x 1 − 1 , x 2 , f s t e p − 1 , x 1 , x 2 − 1 , f s t e p − 1 , x 1 − 1 , x 2 − 1 ) + m x 1 , s t e p − x 1 + m x 2 , s t e p − x 2 ) f_{step, x_1, x_2} = max(f_{step -1, x_1, x_2}, f_{step - 1, x_1 - 1, x_2}, f_{step - 1, x_1, x_2 - 1}, f_{step - 1, x_1 - 1, x_2 - 1}) + m_{x_1, step - x_1} + m_{x_2, step-x_2}) fstep,x1,x2=max(fstep−1,x1,x2,fstep−1,x1−1,x2,fstep−1,x1,x2−1,fstep−1,x1−1,x2−1)+mx1,step−x1+mx2,step−x2)
f
(
s
t
e
p
,
x
1
,
x
2
)
f(step, x1, x2)
f(step,x1,x2)表示:两次从小渊到小轩,纸条在(x1, step - x1)
和(x2, step - x2)
时,与左上角小渊的路径之间的最大的好感度之和。
两个二维 dp 是错的,是贪心思想,取第一次的最大值路径与第二次的最大值路径的和可能不是最大值。最大值的情况可能在第一次路径时,好感度之和不是最大。
代码(cpp):
#include<stdio.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) > (b) ? (b) : (a))
int max_4(int a, int b, int c, int d)
{
int x = MAX(a, b);
int y = MAX(c, d);
return MAX(x, y);
}
int main()
{
int m, n;
int map[51][51] = {0};
int dp[101][51][51] = {0};
int i, j, step, x1, x2;
int mapVal;
scanf("%d %d", &m, &n);
for (i = 0; i < m; ++ i)
for (j = 0; j < n; ++ j)
{
scanf("%d", &mapVal);
map[i + 1][j + 1] = mapVal;
}
for (step = 1; step < m + n + 1; ++ step)
for (x1 = 1; x1 < MIN(m, step) + 1; ++ x1)
for (x2 = 1; x2 < MIN(m, step) + 1; ++ x2)
dp[step][x1][x2] = max_4(dp[step - 1][x1][x2 - 1], dp[step - 1][x1 - 1][x2], dp[step - 1][x1 - 1][x2 - 1], dp[step - 1][x1][x2]) + map[x1][step - x1] + map[x2][step - x2] * (!(x1 == x2));
printf("%d", dp[m + n][m][m]);
return 0;
}