淘宝/天猫按图搜索淘宝商品(拍立淘) API

淘宝/天猫的“拍立淘”(也称为按图搜索)是一个强大的功能,允许用户通过上传图片来搜索相似的商品。然而,直接为第三方开发者提供“拍立淘”的API接口并不在淘宝/天猫的开放API服务中。

对于淘宝/天猫的开放API,如“淘宝开放平台”(Taobao Open Platform, TOP)或“天猫开放平台”(Tmall Open Platform),它们主要提供了对商品、订单、物流等功能的访问,但并不包括直接的图像搜索功能。

如果你希望实现类似“拍立淘”的功能,你可能需要考虑以下几种方法:

  1. 使用图像识别服务:你可以使用如阿里云、腾讯云等提供的图像识别服务,这些服务通常提供了图片相似度匹配、物体识别等功能。你可以上传用户提供的图片,并使用这些服务来搜索与之相似的图片或商品。
  2. 自定义解决方案:如果你有大量的商品图片数据,并希望实现更精确的按图搜索功能,你可能需要构建一个自定义的图像识别系统。这通常涉及深度学习、特征提取和相似度匹配等技术。
  3. 与淘宝/天猫合作:如果你有一个特定的业务需求,并希望获得淘宝/天猫的“拍立淘”功能,你可能需要与他们进行商业合作。然而,这通常涉及到较高的门槛和成本。

item_search_img-按图搜索淘宝商品(拍立淘) 

taobao.item_search_img

公共参数

请求地址: 

名称类型必须描述
keyString调用key(必须以GET方式拼接在URL中)
secretString调用密钥
api_nameStringAPI接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]
cacheString[yes,no]默认yes,将调用缓存的数据,速度比较快
result_typeString[json,jsonu,xml,serialize,var_export]返回数据格式,默认为json,jsonu输出的内容中文可以直接阅读
langString[cn,en,ru]翻译语言,默认cn简体中文
versionStringAPI版本

请求参数

请求参数:imgid=http://g-search3.alicdn.com/img/bao/uploaded/i4/O1CN01IDpcD81zHbpHs1YgT_!!2200811456689.jpg

参数说明:imgid:图片地址(支持淘宝或天猫图片地址,外部地址先调用上传图片(upload_img)接口,返回图片地址)
如:https://img.alicdn.com/imgextra/i3/15353738/TB2HDHAqN9YBuNjy0FfXXXIsVXa_!!15353738-0-beehive-scenes.jpg
page:页数

响应参数

Version: Date:

名称类型必须示例值描述

title

String0亲子装短袖t恤社会人衣服全家装一家三口母子母女纯棉夏装上衣潮宝贝标题

cid

Int050015374

list_type

String0外观相似宝贝列表类型

pic_url

String0//g-search3.alicdn.com/img/bao/uploaded/i4/TB26ry1rBsmBKNjSZFsXXaXSVXa_!!2628705716.jpg宝贝图片

promotion_price

String038.71优惠价

price

Float039.50价格

sales

Int07销量

num_iid

Bigint0575727312808宝贝ID

sample_id

Bigint01627115368商品风格标识ID

seller_nick

String0专属味道之dzw掌柜昵称

is_tmall

Bool0false

post_fee

String00.00物流费用

area

String0广东 东莞店铺所在地

detail_url

String0//item.taobao.com/item.htm?id=575727312808&ns=1#detail宝贝链接

 

### 如何使用Python爬虫抓取淘宝天猫商品评论数据 要实现从淘宝天猫平台上抓取商品评论数据的任务,可以参考现有的技术方案和工具。以下是详细的说明: #### 技术背景 网络爬虫是一种自动化程序,用于从互联网上收集特定的数据。对于像淘宝天猫这样的电商平台,其网页结构复杂且可能包含动态加载的内容。因此,构建一个高效的爬虫需要考虑以下几个方面: - **HTTP请求**:通过`requests`库发送GET/POST请求获取目标页面的HTML内容。 - **解析HTML**:利用`BeautifulSoup`或`lxml`等工具解析HTML文档,提取所需的信息。 - **处理JavaScript渲染**:由于许多现代网站依赖于JavaScript动态生成内容,传统的基于静态HTML的爬虫无法有效工作。此时可采用`selenium`或其他浏览器自动化工具模拟真实用户的操作。 #### 方法描述 一种常见的做法是从指定的商品详情页开始,逐步深入到各个分页下的用户评价区域。下面给出具体实现思路及相关代码片段: 1. **安装必要的库** 确保已安装所需的第三方模块,例如 `requests`, `re`, 和 `pandas`. 如果计划使用Selenium,则还需额外配置 WebDriver. 2. **设置初始参数** 定义URL模板、headers头信息以及其他任何自定义选项以伪装成合法访问者减少被封禁风险[^1]. 3. **发起请求并接收响应** 利用循环遍历不同页数链接地址,并调用相应函数下载每一页对应的原始数据流[^4]. 4. **分析返回结果** 应用正则表达式或者XPath/CSS Selector定位感兴趣字段位置,比如用户名、评分星级及时机反馈文字等内容项[^2]. 5. **保存成果至本地文件** 创建DataFrame对象容纳整理后的表格型资料最后导出CSV格式便于后续统计分析用途[^3]. ```python import requests from bs4 import BeautifulSoup as soup import pandas as pd import time from selenium import webdriver def get_page(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)' ' AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89 Safari/537.36' } response = requests.get(url=url, headers=headers) if response.status_code == 200: return response.text else: raise Exception('Failed to load page {}'.format(response.url)) def parse_html(html_content): parsed_data = [] sp = soup(html_content,'html.parser') comments_section = sp.find_all("div", {"class": "comment"}) for comment in comments_section: user_name = comment.select_one('.username').text.strip() rating_star = int(comment.select_one('.rating')['value']) review_text = comment.select_one('.review-text').get_text(separator=" ").strip() entry = {'Username':user_name, 'Rating Stars':rating_star , 'Review Text' :review_text} parsed_data.append(entry) df = pd.DataFrame(parsed_data) return df if __name__=='__main__': base_url='https://example.tmall.com/reviews?page={}' all_reviews_df=pd.DataFrame(columns=['Username','Rating Stars', 'Review Text']) driver=webdriver.Chrome(executable_path='/path/to/chromedriver') try: for i in range(1, max_pages+1): current_url =base_url.format(i) # Use Selenium when JavaScript is involved driver.get(current_url) time.sleep(random.uniform(2,5)) raw_html =driver.page_source temp_df =parse_html(raw_html ) all_reviews_df=all_reviews_df.append(temp_df , ignore_index=True ) output_file ='tmall_product_comments.csv' all_reviews_df.to_csv(output_file,index=False) print(f"All reviews saved into {output_file}.") finally: driver.quit() ``` 上述脚本展示了如何结合Requests与Selenium两种方式分别应对简单场景及需执行JS的情况;同时也体现了将最终采集所得存入Pandas DataFrame再转储为标准CSV形式的过程[^5]。 #### 注意事项 尽管技术可行性强,但在实际部署前务必审慎评估法律合规性和道德责任。未经授权的大规模复制他人站点资源不仅违反服务条款还可能导致法律责任追究。始终优先寻求官方API接口作为首选解决方案。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值