#Ubuntu 18.04 安装tensorflow-gpu 1.9

参考

  • https://tensorflow.google.cn/install/install_linux
  • http://nvidia.com/cuda
  • http://developer.nvidia.com/cudnn

说明

  • 前提是机器上必须有Nvidia显卡,不太老就好(古董也没必要玩这个了吧,费电),在Nvidia官网可以查到显卡支持情况 https://developer.nvidia.com/cuda-gpus
  • 安装过程中的命令都需要root身份,请使用su root切换或者每次加 sudo,编译运行测试代码使用普通用户就好

踩坑后的提示,怪我眼瞎坑自己,[手动抽脸表情]

  • 必须按tensorflow 官网提示的版本安装 1.9 对应 CUDA 9.0,CUDA 9.0 要下载相应版本的cuDNN
  • 如果喜欢折腾,建议使用没有重要数据的硬盘
  • 安装包最好下载到其他电脑上,使用scp拷贝到安装机上,重装了几遍ubuntu,下一次包就2个G,作为联通40G所谓无线流量卡用户,想着还是蛋疼

下载主要安装文件

  • CUDA® 工具包
    #http://nvidia.com/cuda
    #我选的是16.04的run文件,其他的坑不敢踩了
    cuda_9.0.176_384.81_linux.run      
  • cuDNN 深度神经网络(DNN)开发环境,需要网站注册
    #http://developer.nvidia.com/cudnn
    libcudnn7-dev_7.1.4.18-1+cuda9.0_amd64.deb
    libcudnn7_7.1.4.18-1+cuda9.0_amd64.deb  
    libcudnn7-doc_7.1.4.18-1+cuda9.0_amd64.deb

 

准备环境

看CUDA自带的驱动版本,这里是384.81,低于这个版本就要先卸载,>= 跳过

#建议run文件卸载,即你之前下载的Nvidia驱动run文件
chmod +x *.run
./NVIDIA-Linux-x86_64-384.59.run --uninstall
# 不建议采取这种,不知道为什么没尝试过
apt-get remove --purge nvidia*

 

禁用自带的nouveau驱动,如果你连Nvidia驱动都装过了,这一步也免了

vi /etc/modprobe.d/blacklist.conf
#加两行
    blacklist nouveau
    options nouveau modeset=0
#生效配置
update-initramfs -u
#重启,后分辨率变低了,毕竟没有显卡驱动了 reboot #检查是否生效 lsmod | grep nouveau #如果屏幕没有输出则禁用nouveau成功 

 

安装必要的编译环境否者自带网卡驱动安装不上

apt install gcc g++ make make-guile

针对CUDA 9.0,必须将GCC降级为gcc5,也是安装CUDA时发现的

apt install gcc-5 g++-5
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50 
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50  

 

安装 CUDA® 工具包

一定要根据tensorflow版本安装对应版本的CUDA 1.9对应9.0,被自己眼瞎害的

chmod +x cuda_9.0.176_384.81_linux.run
sh ./cuda_9.0.176_384.81_linux.run
#会有说明,需要看的自己看,看了几页不想看/条款看不懂的 按q键
  • 如果安装过程中提示失败,根据提示查看log排错
  • 安装成功后的log
Do you accept the previously read EULA?
accept/decline/quit: accept

You are attempting to install on an unsupported configuration. Do you wish to continue?
(y)es/(n)o [ default is no ]: y

#这里384.81表示显卡驱动版本,如果本机安装的显卡驱动版本比它高就不需要安装
#选no主要是前面踩坑的时候安了CUDA9.2,呵呵
#正常应该是yes
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
(y)es/(n)o/(q)uit: n

Install the CUDA 9.0 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
 [ default is /usr/local/cuda-9.0 ]: 

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 9.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
 [ default is /root ]: 

Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Missing recommended library: libGL.so

Installing the CUDA Samples in /root ...
Copying samples to /root/NVIDIA_CUDA-9.0_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-9.0
Samples:  Installed in /root, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-9.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-9.0/lib64, or, add /usr/local/cuda-9.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_7657.log


/root/NVIDIA_CUDA-9.0_Samples

设置环境变量

vi /etc/ld.so.conf.d/cuda.conf
#写入两行
/usr/local/cuda/lib64
/usr/local/cuda/extras/CUPTI/lib64
vi /etc/profile
#加入两行
export CUDA_HOME=/usr/local/cuda/bin
export PATH=$PATH:$CUDA_HOME 
重启 reboot

测试安装情况

  • 没有报错就表示安装成功
cd /root/NVIDIA_CUDA-9.0_Samples/samples/1_Utilities/deviceQuery
make
./deviceQuery
# Result = PASS 成功
cd ../bandwidthTest
make
./bandwidthTest
#Result = PASS 成功

cuDNN 安装

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks.

#cuDNN v7.1.4 Runtime Library for Ubuntu16.04 (Deb)
dpkg -i libcudnn7_7.1.4.18-1+cuda9.0_amd64.deb
#cuDNN v7.1.4 Developer Library for Ubuntu16.04 (Deb)
dpkg -i libcudnn7-dev_7.1.4.18-1+cuda9.0_amd64.deb 
#cuDNN v7.1.4 Code Samples and User Guide for Ubuntu16.04 (Deb)
libcudnn7-doc_7.1.4.18-1+cuda9.0_amd64.deb
# 锁定版本,免得自动更新破坏环境
apt-mark hold libcudnn7 libcudnn7-dev

 

测试

#Copy the cuDNN sample to a writable path.
$cp -r /usr/src/cudnn_samples_v7/ $HOME
#Go to the writable path.
$ cd  $HOME/cudnn_samples_v7/mnistCUDNN #Compile the mnistCUDNN sample. $make clean && make #Run the mnistCUDNN sample. $ ./mnistCUDNN #If cuDNN is properly installed and running on your Linux system, you will see a message similar to the following: #Test passed! 

 

安装 tensorflow-gpu 以python3为例

sudo apt-get install python3-pip python3-dev
pip3 install tensorflow-gpu

 

测试安装

#测试代码,保存到比如test.py
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) #执行 python3 test.py #第一次有点慢 #没报错,有显卡信息,b'Hello, TensorFlow!',表示成功 

 

结束了,老年人继续学习Tensorflow了

转载于:https://www.cnblogs.com/sameAsN2ed/p/9359111.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值