细胞自动机语言识别的研究进展与挑战
1. 细胞自动机计算能力的限制
代数论证和柯尔莫哥洛夫复杂度是确立低复杂度受限设备计算能力极限的有力工具。若语言 $L$ 能被某个 SCA $A$ 实时识别,那么可以从 $A$ 的描述、双射 $val$ 的描述以及状态序列 $h(z_0)$ 重构出 $o$。然而,这些描述的长度总和小于 $o$ 的 $2k$ 位,这与 $o$ 的不可压缩性产生矛盾。
但目前仍有许多关于这些设备能力的问题悬而未决。例如,同样的论证可证明某些语言不属于实时图灵机或 RSCA,但这并不意味着实时 SCA 比实时图灵机的能力弱。而且,大多数用于推导负面性质的见证语言通常是特设构建的,我们难以确定像 RPOCA 中的多数语言 ${w \in {0, 1}^ : w 有更多的 1 而非 0}$ 或平方语言 ${ww : w \in {0, 1}^ }$ 等“自然”语言的状态。
2. 对角化论证
在计算复杂度中,许多分离结果使用对角化技术。对角化也可用于分离 CA 类,但主要是通过图灵机间接实现。具体来说,它包括展示 CA 被图灵机的高效模拟,从而将图灵机的结果转化为 CA 的结果。
- Fact 1 :对于任何维度 $d$ 和任何复杂度函数 $T$,$d$ - PCA$(T) \subseteq$ DSpace$(T)$。因为 PCA 依赖图是规则的,图灵机可以在空间 $T$ 内对这些高度为 $T$ 的图进行深度优先搜索模拟。此外,该结果对于作为图片识别器的 CA 同样适用。因此,对于二维及更高维度的 CA,分离可从图灵机空间层次结构得出。特别是在语言和图片识别
超级会员免费看
订阅专栏 解锁全文
21

被折叠的 条评论
为什么被折叠?



