Apple
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、线性回归:从基础到 Excel 实践
本文深入介绍了线性回归的基本原理及其在Excel中的实践应用,涵盖从简单线性回归到多元线性回归的建模过程。通过超市冰淇淋销量预测案例,详细展示了数据收集、散点图绘制、趋势线添加、最小二乘法计算斜率与截距的方法,并引入LINEST和INDEX函数进行多元回归分析。文章还讲解了模型评估的关键指标如MSE、RMSE和R²,以及特征选择与正则化等优化策略,最后探讨了线性回归在销售、房价和金融领域的实际应用场景,提供了完整的建模流程图,帮助读者系统掌握线性回归从基础到应用的全过程。原创 2025-10-04 07:39:24 · 40 阅读 · 0 评论 -
14、通过 Excel 学习数据挖掘:入门指南
本文介绍了如何通过Excel学习数据挖掘的入门方法,强调其在透明性、可视化和数据准备方面的优势,适合初学者、教育工作者和希望理解算法原理的用户。文章对比了K-NN在RapidMiner、R语言和Excel中的应用差异,突出了Excel在逐步理解算法机制上的独特价值。同时概述了必备的Excel技能,如公式、自动填充、绝对引用和IF函数系列,并介绍了第二版新增内容,包括探索性数据分析、层次聚类及对逻辑回归损失函数等概念的讲解。最后总结了Excel在数据处理规模和技术实现上的局限性,并提出了进一步学习的数据挖掘路原创 2025-10-03 11:37:45 · 17 阅读 · 0 评论 -
13、数据挖掘实验:神经网络与文本挖掘
本文介绍了数据挖掘中的两个重要实验:神经网络与文本挖掘。神经网络实验通过构建双隐藏层模型预测shRNA功效,涵盖数据处理、参数优化与阈值设定;文本挖掘实验则基于酒店评论进行情感分析,涉及文本预处理、分词、停用词去除及极性得分计算。实验展示了在Excel中实现数据挖掘技术的全过程,并提供了优化策略与拓展方向,帮助读者深入理解结构化与非结构化数据的处理方法。原创 2025-10-02 11:35:39 · 18 阅读 · 0 评论 -
12、数据挖掘:关联分析与人工神经网络实践
本文深入探讨了数据挖掘中的两种核心方法:关联分析与人工神经网络。通过实际案例和Excel操作,详细介绍了关联分析在发现商品购买组合中的应用,以及人工神经网络在乳腺癌分类预测中的建模过程。文章还对比了两种方法的特点,并展示了它们在电商平台推荐系统中的结合应用,最后展望了数据挖掘技术的未来发展。原创 2025-10-01 10:29:14 · 26 阅读 · 0 评论 -
11、数据挖掘中的特征选择、标准化与关联分析
本文深入探讨了数据挖掘中的三大核心技术:特征选择、标准化与关联分析。详细介绍了特征选择的原则与方法,对比了标准化和归一化的不同适用场景,并通过Excel实例演示了具体操作步骤。重点解析了关联分析在市场篮子分析中的应用,涵盖支持度、置信度和提升度等关键指标,结合流程图清晰展示了分析全过程。此外,文章还探讨了多种技术的结合应用与实践建议,帮助读者系统掌握数据预处理与模式发现的关键技能,为实际数据挖掘项目提供有力支持。原创 2025-09-30 09:40:15 · 27 阅读 · 0 评论 -
10、决策树分析与数据预处理:Excel实战指南
本文详细介绍了如何利用Excel进行决策树分析、探索性数据分析(EDA)和数据清洗等数据挖掘前期的关键步骤。通过实际操作指南和公式示例,帮助读者掌握在Excel中实现节点拆分、概率计算、记录与属性统计、数据类型识别、缺失值与异常值检测及处理等技能。同时提供了强化练习建议和关键函数总结,旨在为数据挖掘项目打下坚实的数据基础。原创 2025-09-29 09:40:59 · 38 阅读 · 0 评论 -
9、数据挖掘:朴素贝叶斯与决策树算法解析
本文深入解析了数据挖掘中的两种经典算法:朴素贝叶斯和决策树。通过理论推导与实际案例相结合,详细介绍了朴素贝叶斯的条件概率基础及常用Excel函数应用;重点阐述了决策树的结构、熵的计算、信息增益与增益比的概念,并以高尔夫数据集为例,演示了如何使用Excel手动构建决策树。同时对比了两种不同的Excel实现方法,展示了更高效的自动化计算技巧。最后总结了核心知识点,提出了实际应用场景与未来学习路径,帮助读者系统掌握相关技术。原创 2025-09-28 09:09:50 · 15 阅读 · 0 评论 -
8、数据挖掘中的层次聚类、树状图与朴素贝叶斯分类
本文深入探讨了数据挖掘中的层次聚类、树状图与朴素贝叶斯分类方法。层次聚类适用于数值数据的分组与可视化,但手动操作易出错,可通过K-均值聚类预处理提升效率;朴素贝叶斯则擅长处理分类数据,基于条件概率和属性独立假设,具有计算高效、性能稳定的优势,广泛应用于医疗诊断、文本分类等领域。文章结合Excel实操案例,详细展示了两种方法的实现步骤,并分析其优缺点与适用场景,为实际数据分析提供指导。原创 2025-09-27 13:45:13 · 15 阅读 · 0 评论 -
7、数据挖掘:K近邻与层次聚类实战
本文详细介绍了数据挖掘中的K近邻(K-NN)与层次聚类方法,涵盖其原理、操作步骤及在Excel中的实战应用。内容包括K-NN分类预测、层次聚类的凝聚算法、接近度矩阵构建、质心更新、数据排序与树状图绘制,并提供常见问题解决方法和实际应用案例,帮助读者掌握两种重要数据挖掘技术的基本技能并应用于实际场景。原创 2025-09-26 12:35:49 · 22 阅读 · 0 评论 -
6、数据挖掘:逻辑回归与K近邻算法详解
本文详细介绍了数据挖掘中的两种重要分类算法:逻辑回归和K近邻(K-NN)。逻辑回归作为急切学习器,通过构建模型并优化参数进行预测,适用于线性可分问题;而K-NN作为懒惰学习器,不预先建模,依赖训练数据动态分类,适合复杂分布的数据。文章结合Excel操作实例,讲解了似然与对数损失的计算、距离度量方法、加权投票机制及数据归一化处理,并通过多个实验展示了算法的实际应用。同时提供了算法对比、流程图和优化建议,帮助读者深入理解并灵活运用这两种经典算法。原创 2025-09-25 12:59:29 · 16 阅读 · 0 评论 -
5、数据挖掘中的交叉验证、ROC分析与逻辑回归
本文深入介绍了数据挖掘中的交叉验证、ROC分析与逻辑回归三大核心技术。通过理论讲解与Excel实操相结合,详细阐述了模型性能评估方法及逻辑回归建模过程。重点涵盖ROC曲线绘制、灵敏度与特异度计算、对数似然优化等内容,并展示了其在医疗诊断等领域的应用。文章还总结了各方法的优势与综合应用场景,帮助读者系统掌握这些关键工具,提升模型构建与评估能力。原创 2025-09-24 15:29:31 · 56 阅读 · 0 评论 -
4、线性判别分析与交叉验证:数据挖掘中的关键技术
本文深入探讨了线性判别分析(LDA)与交叉验证在数据挖掘中的关键作用。LDA作为一种有监督的分类方法,通过最大化组间方差与最小化组内方差来实现数据分类,并结合Excel Solver进行模型优化。文章还介绍了多种交叉验证策略,如留出法、k折交叉验证和留一法,强调其在避免过拟合和评估模型泛化能力方面的重要性。通过鸢尾花数据集的实际操作示例,展示了从数据准备、模型构建到性能评估的完整流程,帮助读者掌握LDA与交叉验证的核心技术及其在Excel中的实现方法。原创 2025-09-23 12:19:03 · 43 阅读 · 0 评论 -
3、利用 Excel 深入学习 K-Means 聚类算法
本文详细介绍了如何利用Excel深入学习K-Means聚类算法,涵盖从数据准备、初始质心设置、距离计算到簇分配和迭代收敛的完整流程。通过实际案例和公式解析,帮助读者理解聚类原理,并借助Excel函数如INDEX、MATCH、INDIRECT、SHEET等实现自动化聚类过程。同时提供了多种优化方案,包括使用名称管理器和CELL函数,以及启用迭代计算的技巧,助力掌握这一重要的无监督数据挖掘方法。原创 2025-09-22 16:27:04 · 29 阅读 · 0 评论 -
2、探索 Excel 中的线性回归与数据处理技巧
本文深入探讨了在 Excel 中进行线性回归与数据处理的核心技巧。从基础函数如 IF、COUNTIFS、SUMIFS 的应用,到使用 SLOPE、INTERCEPT 和 LINEST 等函数实现单变量与多变量线性回归模型的构建,全面展示了数据清洗、分析与预测的完整流程。结合实际案例,如冰淇淋销售预测,详细讲解了如何利用 Excel 绘制趋势线、计算回归系数、评估模型误差,并介绍了数据分析工具和公式自动填充等实用操作,帮助读者提升数据挖掘与决策支持能力。原创 2025-09-21 14:01:44 · 21 阅读 · 0 评论 -
1、利用 Excel 开启数据挖掘之旅
本文介绍了如何利用Excel开启数据挖掘之旅,重点阐述了Excel在数据处理透明性、算法理解方面的独特优势,尤其适合初学者和教育工作者。文章详细讲解了Excel核心技能,如公式、自动填充、绝对引用、选择性粘贴及IF函数系列,并通过K-NN等案例说明其在理解算法原理中的作用。同时介绍了书籍第二版的改进内容,包括新增章节、练习强化与公式优化,帮助读者夯实基础,逐步过渡到更复杂的数据挖掘工具。原创 2025-09-20 15:45:02 · 22 阅读 · 0 评论
分享