合唱队形笔记
这道题是要求形成一个合唱的队形,中间的人最高,两边人的身高成递减排列。我的思路就是遍历所有人,以每个人作为中间最高的人ti,分成左边和右边。左边要求递增,右边要求递减。然后分别求出左边的以ti为结尾的严格递增子序列的长度。求出右边以ti为开头的严格递减子序列的长度(把子数组翻转一下求以ti为结尾的严格递增子数组长度)。这就是满足队形要求的人数。最后总人数减去满足要求的人数就得到了要出去的人数。
代码
//找中间的ti,ti可以是0到n-1
#include <iostream>
#include <vector>
using namespace std;
//包含ti的最长递增子序列
int upnum(vector<int>& nums,int start,int end){
if(end-start<=0){return 0;}
//dp[i]表示以i结尾的(必须包含i的)递增子序列的长度
int n=end-start+1;
vector<int> dp(n,1);
dp[0]=1;
for(int i=1;i<n;i++){
for(int j=0;j<i;j++){
if(nums[i+start]>nums[j+start]){
dp[i]=max(dp[i],dp[j]+1);
}
}
}
return n-dp.back();
}
// 包含ti的连续递减子序列
int downnum(vector<int>& nums,int start,int end){
if(end-start<=0){
return 0;
}
vector<int> temp;
while(end>=start){
temp.push_back(nums[end]);
end--;
}
return upnum(temp, 0,temp.size()-1);
}
int main(){
int n;
cin>>n;
vector<int> nums(n,0);
for(int i=0;i<n;i++){
cin>>nums[i];
}
//左边递增,右边递减
int res=n;
for(int i=0;i<n;i++){
int left=upnum(nums,0,i);
int right=downnum(nums,i,n-1);
int tempnum=left+right;
res=min(res,tempnum);
}
cout<<res<<endl;
}