19、能源领域智能物联网的变革与挑战

能源领域智能物联网的变革与挑战

1. 能源领域物联网的应用

1.1 智能电网

智能电网能够通过智能设备在严重问题出现前向技术人员发出警告。例如,持续监测可检测能源需求何时达到电网承载能力。相关部门可依据实时预测,重新安排电力使用时间,以降低高峰时段的需求。在某些情况下,还可采用灵活电价的智能(或动态)定价机制,当预计电力需求上升时,实时定价合同下的能源价格会相应提高。利用智能电网系统收集的数据,可优化和监控电力的消耗与生产。此外,还有两种物联网应用,即主动电压管理以减少输电和配电网络的传输损耗,以及智能电表网络以降低非技术损耗。

1.2 智能建筑

社区的电力使用主要分为三类:住宅(家庭)、工业(服务,包括超市、办公室和学校)和交通。家庭用电包括照明、设施、热水、烹饪、制冷、通风、冷却和空调等。其中,暖通空调(HVAC)能耗占大多数家庭用电量的大部分,因此控制HVAC功能对于降低能源消耗至关重要。随着技术进步,物联网设备在减少HVAC系统的能源损失方面变得更加关键。例如,可使用与占用情况相关的无线恒温器,在房间无人时采取节能措施,如关闭HVAC系统中的电器。此外,物联网还可用于跟踪照明系统的电力短缺,基于物联网的照明系统能在用户能源消耗超过正常限制时发出警告,并将高峰负荷转移到低峰时段,有助于有效利用电力和减少温室气体排放,使市场反应更加灵活,提高跟踪和需求侧管理能力。

1.3 工业智能电力应用

在汽车行业,物联网将创建一个完全集成和分布式的系统,既能节省成本又能提高性能。传统工厂大量使用石油制造产品并计算需求,且需要大量人力资源来跟踪所有活动。而智能工厂采用灵活的方法,可在生产过程中同时进行故障检测,从而减少

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路数学模型。此外,文中列举了大量相关科研方向应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值