python写爬虫4-多线程爬虫(采集58出租房信息)
本文代码是在【python写爬虫3-MongoDB数据缓存(采集58出租房信息)】http://blog.csdn.net/apple9005/article/details/54967916博文的基础上编写
运行【python写爬虫3-MongoDB数据缓存(采集58出租房信息)】中的代码爬取信息,你会发现,爬取一个列表页的详细数据(大约150条左右)会需要一段时间。可见串行爬虫的爬取效率并不高,如何降低爬取数据所花费的时间呢?本文使用多线程来降低爬取时间。
1.先来一个Python的线程小事例
直接使用python的内置模块threading
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import threading
from time import ctime, sleep
def music(func):
for i in range(2):
print 'I was listening to %s.%s' % (func, ctime())
sleep(1)
def move(func):
for i in range(2):
print "I was at the %s!%s" % (func, ctime())
sleep(5)
threads = []
t1 = threading.Thread(target=music, args=(u'爱情买卖',))
threads.append(t1)
t2 = threading.Thread(target=move, args=(u'阿凡达',))
threads.append(t2)
if __name__ == '__main__':
for t in threads:
# t.setDaemon(True) # 设为守护进程
t.start()
print 'All over %s' % ctime()
未设为守护进程,执行结果如下:
设为守护进程,执行结果如下:
2.多线程爬虫
#! /usr/bin/env python
# -*- coding:utf-8 -*-
import urllib2
import lxml.html
import time
from lxml.cssselect import CSSSelector
from MongoCache import MongoCache
import threading
def download(url, user_agent='Google', num_retries=2):
"""下载整个页面"""
print 'Downloading:', url
# 设置用户代理
headers = {'User-agent': user_agent}
request = urllib2.Request(url, headers=headers)
try:
html = urllib2.urlopen(request).read()
except urllib2.URLError as e:
print 'Downloading error:', e.reason
html = None
# 只有在服务器报500-600错误时,才会重试下载,仅重试2次
if num_retries > 0:
if hasattr(e, 'code') and 500 <= e.code < 600:
return download(url, num_retries-1)
return html
def get_data(url):
"""从详细页面 获取各字段数据"""
# 如果缓存中有该页面数据,则直接获取使用;否则,先下载页面,再使用
cache = MongoCache()
if not cache.__getitem__(url):
html_text_detail = download(url)
if not html_text_detail:
print 'None:', url
else:
cache.__setitem__(url, html_text_detail)
else:
print 'Exists:', url
html_text_detail = cache.__getitem__(url)
try:
# 获取个字段数据
tree = lxml.html.fromstring(html_text_detail)
house_title = CSSSelector('div.main-wrap > div.house-title > h1')
house_pay_way1 = CSSSelector('div.house-pay-way > span:nth-child(1)')
house_pay_way2 = CSSSelector('div.house-pay-way > span:nth-child(2)')
print house_title(tree)[0].text_content()
print '%s|%s' % (house_pay_way1(tree)[0].text_content(), house_pay_way2(tree)[0].text_content())
for i in range(7):
for j in range(2):
css = 'div.house-desc-item > ul.f14 > li:nth-child(%s) > span:nth-child(%s)' % (i+1, j+1)
house_info = CSSSelector(css)
print house_info(tree)[0].text_content().replace(' ', '')
except TypeError as e:
print 'HTML文本发生错误:%s' % e
except IndexError as e:
print '获取详细数据发生错误:%s' % e
def get_url(html):
"""获取需爬取数据的链接集"""
tree = lxml.html.fromstring(html)
sel = CSSSelector('div.mainbox > div.main > div.content > div.listBox > ul.listUl > li > div.des > h2 > a')
url_list = []
for i in sel(tree):
if i.get('href') not in url_list:
url_list.append(i.get('href'))
return url_list
if __name__ == '__main__':
url_index = 'http://bj.58.com/chuzu/'
html_text_list = download(url_index)
url_list = get_url(html_text_list)
for url_detail in url_list:
thr = threading.Thread(target=get_data, args=(url_detail,))
thr.start()
print '-------------------Thread Name: %s----------------' % thr.getName()
time.sleep(2) # 延时2s,如果注释这代码,运行会很快结束。
运行结果如下: