题目
给出 n
个数对。 在每一个数对中,第一个数字总是比第二个数字小。
现在,我们定义一种跟随关系,当且仅当 b < c
时,数对(c, d)
才可以跟在 (a, b)
后面。我们用这种形式来构造一个数对链。
给定一个数对集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。
示例:
输入:[[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4]
提示:
- 给出数对的个数在
[1, 1000]
范围内。
思路
- 贪心,由题目可知,当"
b
"递增时,形成的数对链最长 - 根据"
b
"递增排序,遍历数组,求取最长数对链
代码
class Solution:
def findLongestChain(self, pairs: List[List[int]]) -> int:
pairs.sort(key=(lambda x: x[1]))
lastB = -math.inf
ret = 0
for c,d in pairs:
if lastB < c:
ret +=1
lastB = d
return ret
复杂度
- 时间复杂度: O ( n log n ) O(n\log n) O(nlogn)
- 空间复杂度: O ( log n ) O(\log n) O(logn)