有效的完全平方数(leetcode)——多种解法让你掉下巴

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。

示例 1:

输入:num = 16
输出:true
示例 2:

输入:num = 14
输出:false

提示:

1 <= num <= 2^31 - 1


这个题是个简单题,解法也是很多的,下面我们一一看看吧

示例一:
这个是错误的示范,对于刚入门级别的来说可能会写出这种!错误主要就是如果给出的数字太大了,那么就是超过规定运行给出来的最大时间!

//错误解法
class Solution {
    public boolean isPerfectSquare(int num) {
        int i=0;
        while(i*i<=num){
            if(i*i==num){
                return true;
            }
            i++;
        }
        return false; 
    }
}

示例二:
非常经典的二分法,速度执行很快,唯一要注意的是不要直接使用midmid,这样数字太大会溢出的,可以用long类型的存储midmid也可以用下面这种除法巧妙化解

class Solution{
public boolean isPerfectSquare(int num) {
        int low = 1;
        int high = num;
        while (low <= high) {
            int mid = low + (high - low) / 2int t = num / mid;
            if (t == mid) {
            //余数位0则才是真的完全平方数
            //否则代表原来的t应该有小数,偏大
                if (num%mid == 0) 
                    return true;
                low = mid + 1;
            } else if (t < mid) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return false;
    }
}

示例三:
在数学上我们都知道一个完全平方数为前2n-1项奇数的和,即:

num = n^2 = 1 + 3 + 5 + … + (2 * n - 1)

因此另外一种做法是对 num 进行不断的奇数试减,如果最终能够减到 0,说明 num 可展开成如 1+3+5+…+(2*n-1) 的形式,num则为完全平方数。

class Solution {
    public boolean isPerfectSquare(int num) {
        int x = 1;
        while (num > 0) {
            num -= x;
            x += 2;
        }
        return num == 0;
    }
}

示例四:
使用了java的内置库函数sqrt来做。

class Solution {
    public boolean isPerfectSquare(int num) {
        int x = (int) Math.sqrt(num);
        return x * x == num;
    }
}

实例五:

如果你用python你还可以这样:

class Solution(object):
    def isPerfectSquare(self, num):
      return num**0.5 % 1 == 0

你想到了吗??

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

abcccccccccccccccode

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值