给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16
输出:true
示例 2:
输入:num = 14
输出:false
提示:
1 <= num <= 2^31 - 1
这个题是个简单题,解法也是很多的,下面我们一一看看吧
示例一:
这个是错误的示范,对于刚入门级别的来说可能会写出这种!错误主要就是如果给出的数字太大了,那么就是超过规定运行给出来的最大时间!
//错误解法
class Solution {
public boolean isPerfectSquare(int num) {
int i=0;
while(i*i<=num){
if(i*i==num){
return true;
}
i++;
}
return false;
}
}
示例二:
非常经典的二分法,速度执行很快,唯一要注意的是不要直接使用midmid,这样数字太大会溢出的,可以用long类型的存储midmid也可以用下面这种除法巧妙化解
class Solution{
public boolean isPerfectSquare(int num) {
int low = 1;
int high = num;
while (low <= high) {
int mid = low + (high - low) / 2;
int t = num / mid;
if (t == mid) {
//余数位0则才是真的完全平方数
//否则代表原来的t应该有小数,偏大
if (num%mid == 0)
return true;
low = mid + 1;
} else if (t < mid) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return false;
}
}
示例三:
在数学上我们都知道一个完全平方数为前2n-1项奇数的和,即:
num = n^2 = 1 + 3 + 5 + … + (2 * n - 1)
因此另外一种做法是对 num 进行不断的奇数试减,如果最终能够减到 0,说明 num 可展开成如 1+3+5+…+(2*n-1) 的形式,num则为完全平方数。
class Solution {
public boolean isPerfectSquare(int num) {
int x = 1;
while (num > 0) {
num -= x;
x += 2;
}
return num == 0;
}
}
示例四:
使用了java的内置库函数sqrt来做。
class Solution {
public boolean isPerfectSquare(int num) {
int x = (int) Math.sqrt(num);
return x * x == num;
}
}
实例五:
如果你用python你还可以这样:
class Solution(object):
def isPerfectSquare(self, num):
return num**0.5 % 1 == 0
你想到了吗??