算法的学习笔记—正则表达式匹配的动态规划算法解析

img

😀前言
正则表达式是一种强大的工具,广泛应用于文本匹配和处理。在许多编程任务中,我们可能会遇到需要匹配字符串与某个特定模式的情况。本文将介绍如何使用动态规划算法实现一个支持 .* 的正则表达式匹配功能,并以 Java 为例进行代码实现。

🏠个人主页:尘觉主页

🥰正则表达式匹配的动态规划算法解析

😃问题描述

给定一个字符串 str 和一个模式 pattern,要求实现一个函数来判断 str 是否匹配 pattern。其中,模式中包含的特殊字符有:

  • .:匹配任意单个字符。
  • *:匹配前一个字符任意次(包括 0 次)。

例如,字符串 "aaa" 与模式 "a.a""ab*ac*a" 匹配,但与模式 "aa.a""ab*a" 不匹配。

😆解题思路

要解决这个问题,我们可以使用动态规划来逐步构建匹配结果。动态规划的思想是将一个大问题拆解成一系列小问题,然后通过递归或迭代来解决这些小问题,从而得出最终结果。

😘 状态定义

我们定义一个二维数组 dp[m + 1][n + 1],其中 dp[i][j] 表示字符串 str 的前 i 个字符与模式 pattern 的前 j 个字符是否匹配。

😘转移方程

  1. 初始状态

    • 当字符串和模式都为空时,显然是匹配的,因此 dp[0][0] = true
    • 如果字符串为空但模式不为空,只有模式中的 * 可以匹配空字符串,因此我们需要初始化 dp[0][j]。如果模式的第 j 个字符是 *,那么它可以消去它前面的字符,因此 dp[0][j] = dp[0][j-2]
  2. str[i-1]pattern[j-1] 相等,或者 pattern[j-1]. 时,dp[i][j] 可以继承 dp[i-1][j-1] 的值,因为当前字符匹配,匹配结果取决于前面部分的匹配情况。

    pattern[j-1]* 时,有两种情况:

    1. * 将它前面的字符消掉,即 pattern[j-2] 可以被忽略,这时 dp[i][j] = dp[i][j-2]
    2. 如果 str[i-1]pattern[j-2] 相等,或者 pattern[j-2].,那么 * 可以代表一次或多次匹配,这时 dp[i][j] = dp[i-1][j]dp[i][j] = dp[i][j-1]
public class Solution {
    public boolean match(String str, String pattern) {
        int m = str.length(), n = pattern.length();
        boolean[][] dp = new boolean[m + 1][n + 1];

        // 初始化状态
        dp[0][0] = true;
        for (int j = 1; j <= n; j++) {
            if (pattern.charAt(j - 1) == '*') {
                dp[0][j] = dp[0][j - 2];
            }
        }

        // 动态规划填表
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 如果当前字符匹配,或者模式字符为 '.'
                if (str.charAt(i - 1) == pattern.charAt(j - 1) || pattern.charAt(j - 1) == '.') {
                    dp[i][j] = dp[i - 1][j - 1];
                } 
                // 如果模式字符为 '*'
                else if (pattern.charAt(j - 1) == '*') {
                    // * 代表 0 次
                    dp[i][j] = dp[i][j - 2];
                    // * 代表 1 次或多次
                    if (pattern.charAt(j - 2) == str.charAt(i - 1) || pattern.charAt(j - 2) == '.') {
                        dp[i][j] |= dp[i - 1][j];
                    }
                }
            }
        }

        // 返回最终匹配结果
        return dp[m][n];
    }
}

😀代码解析

  1. 初始化状态
    • dp[0][0] = true 表示空字符串与空模式匹配。
    • 对于只有 * 的模式,初始化 dp[0][j]dp[0][j-2],表示 * 号匹配 0 次。
  2. 动态规划填表
    • 如果当前字符匹配(包括 . 的情况),那么直接继承 dp[i-1][j-1] 的结果。
    • 如果当前模式字符为 *,则有两种情况:
      1. * 表示 0 次匹配,则继承 dp[i][j-2]
      2. * 表示 1 次或多次匹配,继承 dp[i-1][j],并用 |= 操作将结果合并。
  3. 返回结果
    • 最终,dp[m][n] 存储了字符串 str 与模式 pattern 是否匹配的结果。

😊示例分析

以字符串 "aaa" 和模式 "ab*ac*a" 为例,算法通过动态规划的方式一步步验证每个字符与模式的匹配关系。最终,通过矩阵 dp 的计算,可以判断 "aaa""ab*ac*a" 匹配。

😊时间与空间复杂度

  • 时间复杂度:O(m * n),其中 m 是字符串的长度,n 是模式的长度。动态规划矩阵的每个元素都需要被填充一次,因此时间复杂度为 O(m * n)。
  • 空间复杂度:O(m * n),需要一个二维矩阵存储动态规划的结果。

😄总结

本文介绍了一种基于动态规划的正则表达式匹配算法,能够有效处理带有 .* 的复杂模式匹配问题。通过构建和解析状态转移方程,该算法可以在多种匹配场景下表现出色,并且具有线性时间和空间复杂度,适合大规模数据的匹配任务。

😁热门专栏推荐
想学习vue的可以看看这个

java基础合集

数据库合集

redis合集

nginx合集

linux合集

手写机制

微服务组件

spring_尘觉

springMVC

mybits

等等等还有许多优秀的合集在主页等着大家的光顾感谢大家的支持

🤔欢迎大家加入我的社区 尘觉社区

文章到这里就结束了,如果有什么疑问的地方请指出,诸佬们一起来评论区一起讨论😁
希望能和诸佬们一起努力,今后我们一起观看感谢您的阅读🍻
如果帮助到您不妨3连支持一下,创造不易您们的支持是我的动力🤞

img

  • 16
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尘觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值