1. 题目链接
714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)
2. 题目描述
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
3. 题目示例
示例 1 :
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2 :
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
4. 解题思路
- 问题理解:这是带交易费的无限次交易股票买卖问题,每次卖出时需要支付固定费用fee。
- 状态定义:
f0
:不持有股票时的最大利润f1
:持有股票时的最大利润
- 状态转移:
- 不持有股票的状态转移:
- 保持前一天不持有状态(
f0
) - 或者卖出前一天持有的股票(
f1 + p - fee
)
- 保持前一天不持有状态(
- 持有股票的状态转移:
- 保持前一天持有状态(
f1
) - 或者买入今天的股票(
f0 - p
)
- 保持前一天持有状态(
- 不持有股票的状态转移:
- 初始化:
f0 = 0
:初始时不持有股票,利润为0f1 = -∞
:初始时不可能持有股票
- 关键点:
- 交易费只在卖出时扣除
- 使用
newF0
临时变量保存新状态,避免覆盖原值 - 最终结果是不持有股票的状态
5. 题解代码
class Solution {
public int maxProfit(int[] prices, int fee) {
int f0 = 0; // 初始状态:不持有股票时的最大利润(初始为0)
int f1 = Integer.MIN_VALUE / 2; // 初始状态:持有股票时的最大利润(初始为负无穷,表示不可能)
// 遍历每一天的价格
for (int p : prices) {
// 计算新状态:不持有股票的最大利润
// 1. 保持前一天不持有状态(f0)
// 2. 卖出前一天持有的股票(f1 + p - fee)
int newF0 = Math.max(f0, f1 + p - fee);
// 更新持有股票的最大利润
// 1. 保持前一天持有状态(f1)
// 2. 买入今天的股票(f0 - p)
f1 = Math.max(f1, f0 - p);
// 更新不持有股票的状态
f0 = newF0;
}
return f0; // 最终返回不持有股票时的最大利润
}
}
6. 复杂度分析
时间复杂度:O(n),其中n是价格数组的长度。我们只需要遍历价格数组一次。
空间复杂度:O(1),只使用了常数个额外变量(f0和f1)。