1. 题目链接
2. 题目描述
给定一个二叉树的 root
,返回 最长的路径的长度 ,这个路径中的 每个节点具有相同值 。 这条路径可以经过也可以不经过根节点。
两个节点之间的路径长度 由它们之间的边数表示。
3. 题目示例
示例 1 :
输入:root = [5,4,5,1,1,5]
输出:2
示例 2 :
输入:root = [1,4,5,4,4,5]
输出:2
4. 解题思路
- 问题理解:
- 需要找到二叉树中最长的路径,路径上所有节点值相同
- 路径长度按边数计算(节点数-1)
- 路径可以不经过根节点
- 关键思路:
- 后序遍历计算每个节点的同值链长度
- 对于每个节点,计算其作为路径转折点时的路径长度
- 维护全局最大值
- 递归设计:
- 基本情况:空节点返回-1(使得叶子节点计算后为0)
- 递归计算左右子树的同值链长度
- 如果子节点值不同,则重置对应链长为0
- 更新全局最大值(左右链拼接)
- 返回当前节点的最大同值链长度
- 链长与路径长:
- 链长:从当前节点向下延伸的同值路径边数
- 路径长:可能由两条链拼接而成
5. 题解代码
class Solution {
private int ans; // 存储最终结果(最长同值路径长度)
public int longestUnivaluePath(TreeNode root) {
dfs(root); // 从根节点开始深度优先搜索
return ans; // 返回最长同值路径长度
}
private int dfs(TreeNode node) {
if (node == null) {
return -1; // 空节点返回-1,这样叶子节点计算时+1后为0
}
// 递归计算左子树的最大同值链长度(+1表示包含当前边)
int lLen = dfs(node.left) + 1;
// 递归计算右子树的最大同值链长度(+1表示包含当前边)
int rLen = dfs(node.right) + 1;
// 如果左子节点存在且值不同,重置左链长度为0
if (node.left != null && node.left.val != node.val) lLen = 0;
// 如果右子节点存在且值不同,重置右链长度为0
if (node.right != null && node.right.val != node.val) rLen = 0;
// 更新全局最大值(左右链拼接的总长度)
ans = Math.max(ans, lLen + rLen);
// 返回当前子树的最大同值链长度(只能选择左右链中的一条)
return Math.max(lLen, rLen);
}
}
6. 复杂度分析
时间复杂度:O(n)
- 每个节点只访问一次
- n为树中节点数量
空间复杂度:O(h)
- 递归调用栈深度
- h为树的高度(最坏情况O(n),平衡树O(logn))