[面试精选] 0240. 搜索二维矩阵 ii

1. 题目链接


240. 搜索二维矩阵 II - 力扣(LeetCode)


2. 题目描述


编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

3. 题目示例


示例 1 :

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2 :

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

4. 解题思路


  1. 问题理解
    • 给定一个 m×n 的二维矩阵,其中:
      • 每行从左到右升序排列
      • 每列从上到下升序排列
    • 需要判断目标值 target 是否存在于矩阵中
  2. 关键思路
    • 搜索起点选择
      • 从矩阵的左下角(或右上角)开始搜索
      • 这些位置具有特殊的单调性:向左递减,向上递增(或向右递增,向下递减)
    • 搜索策略
      • 类似二叉搜索树的搜索过程
      • 当前元素 > target:向上移动(行减小)
      • 当前元素 < target:向右移动(列增加)

5. 题解代码


class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        // 初始化指针位置:左下角元素
        int i = matrix.length - 1;  // 行指针,初始指向最后一行
        int j = 0;                 // 列指针,初始指向第一列
        
        // 搜索过程
        while (i >= 0 && j < matrix[0].length) {  // 确保指针在矩阵范围内
            if (matrix[i][j] > target) {
                i--;  // 当前元素大于目标值,向上移动(行减小)
            } else if (matrix[i][j] < target) {
                j++;  // 当前元素小于目标值,向右移动(列增加)
            } else {
                return true;  // 找到目标值
            }
        }
        
        // 遍历完未找到
        return false;
    }
}


6. 复杂度分析


  1. 时间复杂度
    • 最坏情况下需要遍历 m+n 次(从左下到右上)
    • 时间复杂度为 O(m+n)
  2. 空间复杂度
    • 仅使用常数个额外空间
    • 空间复杂度为 O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值