1. 向量的点积与叉积
1.1 向量的点积
数量积又称标量积(Scalar product)、点积(Dot product),在欧几里得空间(Euclidean space)中称为内积(Inner product),对应元素相乘相加,结果是一个标量(即一个数)。
对于向量 a ⃗ = ( a 1 , a 2 ) , b ⃗ = ( b 1 , b 2 ) \vec{a}=\left( {{a}_{1}},{{a}_{2}} \right),\vec{b}=\left( {{b}_{1}},{{b}_{2}} \right) a=(a1,a2),b=(b1,b2),两者的数量积: a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 \vec{a}\cdot \vec{b}= {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}} a⋅b=a1b1+a2b2 a ⃗ ⋅ b ⃗ \vec{a}\cdot \vec{b} a⋅b的几何意义是 a ⃗ \vec{a} a在 b ⃗ \vec{b} b方向上的投影(仅在二维、三维空间向量有意义): a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ c o s θ \vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|* | {\vec{b}} | *cos\theta a⋅b=∣a∣∗∣b∣∗cosθ其中, ∣ a ⃗ ∣ \left| {\vec{a}} \right| ∣a∣ 、 ∣ b ⃗ ∣ |{\vec{b}}| ∣b∣分别为向量 a ⃗ \vec{a} a、 b ⃗ \vec{b} b的模, θ \theta θ为向量 a ⃗ \vec{a} a、 b ⃗ \vec{b} b的夹角。
对于 n n n维向量 a ⃗ = ( a 1 , a 1 , . . . , a n ) , b ⃗ = ( b 1 , b 2 , . . . , b n ) \vec{a}=\left( {{a}_{1}},{{a}_{1}},..., {{a}_{n}} \right)~,\vec{b}=\left( {{b}_{1}},{{b}_{2}} ,...,{{b}_{n}}\right) a=(a1,a1,...,an) ,b=(b1,b2,...,bn),两者的数量积: a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + . . . + a n b n \vec{a}\cdot \vec{b}= {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+...+{{a}_{n}}{{b}_{n}} a⋅b=a1b1+a2b2+...+anbn
numpy中 使用
np.dot
或numpy.inner()
实现向量的点积
举例 a ⃗ = ( 1 , 2 , 3 ) b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a=(1,2,3)b=(4,5,6) a ⃗ ⋅ b ⃗ = 1 × 4 + 2 × 5 + 3 × 6 = 32 \vec{a}\cdot \vec{b}= 1\times 4 + 2 \times 5 +3\times 6 = 32 a⋅b=1×4+2×5+3×6=32
import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6])
## 数量积 使用np.dot或np.inner
print(np.dot(a,b))
1.2 向量的叉积
向量积又称矢量积(Vector product)、叉积(Cross product)、外积(Outer product),结果是一个向量。
对于向量 a ⃗ = ( a 1 , a 2 , a 3 ) b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {{a}_{1}},{{a}_{2}}, {{a}_{3}} \right)~\vec{b}=\left( {{b}_{1}},{{b}_{2}} ,{{b}_{3}}\right) a=(a1,a2,a3) b=(b1,b2,b3),两者的叉积为 a ⃗ \vec{a} a和 b ⃗ \vec{b} b的法向量,该向量垂直于 a ⃗ \vec{a} a和 b ⃗ \vec{b} b构成的平面。 a ⃗ × b ⃗ = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − b 2 a 3 ) i ⃗ − ( a 1 b 3 − b 1 a 3 ) j ⃗ + ( a 1 b 2 − b 1 a 2 ) k ⃗ \vec{a} \times \vec{b}= \begin{vmatrix}i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} = (a_2b_3-b_2a_3)\vec{i} - (a_1b_3-b_1a_3)\vec{j}+(a_1b_2-b_1a_2)\vec{k} a×b=∣ ∣ia1b1ja2b2ka3b3∣ ∣=(a2b3−b2a3)i−(a1b3−b1a3)j+(a1b2−b1a2)k其中, i , j , k i,j,k i,j,k分别是 X , Y , Z X,Y,Z X,Y,Z轴方向的单位向量.
该向量的模 ∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ s i n θ |\vec{a} \times \vec{b}| =\left| {\vec{a}} \right|*| {\vec{b}} |*sin\theta ∣a×b∣=∣a∣∗∣b∣∗sinθ其中, ∣ a ⃗ ∣ \left| {\vec{a}} \right| ∣a∣ 、 ∣ b ⃗ ∣ |{\vec{b}}| ∣b∣分别为向量 a ⃗ \vec{a} a、 b ⃗ \vec{b} b的模, θ \theta θ为向量 a ⃗ \vec{a} a、 b ⃗ \vec{b} b的夹角。
即,叉积的长度 ∣ a ⃗ × b ⃗ ∣ |\vec{a} \times \vec{b}| ∣a×b∣为向量 a ⃗ \vec{a} a、 b ⃗ \vec{b} b共起点时,构成平行四边形的面积。
numpy中 使用
np.cross
实现向量的叉积
举例 a ⃗ = ( 1 , 2 , 3 ) b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a=(1,2,3)b=(4,5,6) a ⃗ ⋅ b ⃗ = ( 2 × 6 − 3 × 5 , 4 × 3 − 1 × 6 , 1 × 5 − 2 × 4 ) = ( − 3 , 6 , − 3 ) \vec{a}\cdot \vec{b}=(2\times 6 -3\times 5 , 4 \times 3 - 1\times 6,1\times 5 - 2 \times 4)=(-3,6,-3) a⋅b=(2×6−3×5,4×3−1×6,1×5−2×4)=(−3,6,−3)
import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6])
## 叉积 使用np.cross
print(np.cross(a,b))
点积与叉积小结:
名称 | 点积/数量积/标量积/内积/ | 叉积/向量积/矢量积/外积 |
---|---|---|
输入(以 R 3 R^3 R3为例) | a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {{a}_{1}},{{a}_{2}}, {{a}_{3}} \right),\vec{b}=\left( {{b}_{1}},{{b}_{2}} ,{{b}_{3}}\right) a=(a1,a2,a3),b=(b1,b2,b3) | a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {{a}_{1}},{{a}_{2}}, {{a}_{3}} \right),\vec{b}=\left( {{b}_{1}},{{b}_{2}} ,{{b}_{3}}\right) a=(a1,a2,a3),b=(b1,b2,b3) |
运算 | a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a}\cdot \vec{b}= {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} a⋅b=a1b1+a2b2+a3b3 | a ⃗ × b ⃗ = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ \vec{a} \times \vec{b}=\begin{vmatrix}i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} a×b=∣ ∣ia1b1ja2b2ka3b3∣ ∣ |
输出 | 数值(标量): a ⃗ \vec{a} a在 b ⃗ \vec{b} b方向上的投影与 ∣ b ⃗ ∣ |\vec{b}| ∣b∣的乘积,即 ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ c o s θ | \vec{a} |* | \vec{b}|*cos\theta ∣a∣∗∣b∣∗cosθ | 向量(矢量): a ⃗ \vec{a} a和 b ⃗ \vec{b} b的法向量,该向量的模为 ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ s i n θ | \vec{a} |* | \vec{b}|*sin\theta ∣a∣∗∣b∣∗sinθ |
注:数量、向量常用于数学;而标量、矢量常用于物理
2 矩阵的点积与叉积
2.1 矩阵的点积
对于
A
A
A矩阵(
m
×
s
m \times s
m×s阶),
B
B
B矩阵(
s
×
n
s \times n
s×n阶)(A的列数与B的行数相等),
A
=
[
a
11
a
12
⋯
a
1
s
a
21
a
22
⋯
a
2
s
⋯
⋯
⋱
⋮
a
m
1
a
m
2
⋯
a
m
s
]
B
=
[
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋯
⋯
⋱
⋮
b
s
1
b
s
2
⋯
b
s
n
]
A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \cdots & {{a}_{1s}} \\ {{a}_{21}} & {{a}_{22}} & \cdots & {{a}_{2s}} \\ \cdots & \cdots & \ddots & \vdots \\ {{a}_{m1}} & {{a}_{m2}} & \cdots & {{a}_{ms}} \\ \end{matrix} \right]~~~~~B=\left[ \begin{matrix} {{b}_{11}} & {{b}_{12}} & \cdots & {{b}_{1n}} \\ {{b}_{21}} & {{b}_{22}} & \cdots & {{b}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {{b}_{s1}} & {{b}_{s2}} & \cdots & {{b}_{sn}} \\ \end{matrix} \right]
A=⎣
⎡a11a21⋯am1a12a22⋯am2⋯⋯⋱⋯a1sa2s⋮ams⎦
⎤ B=⎣
⎡b11b21⋯bs1b12b22⋯bs2⋯⋯⋱⋯b1nb2n⋮bsn⎦
⎤两者的点积,即矩阵相乘的结果
C
=
A
B
C=AB
C=AB是
m
×
n
m\times n
m×n阶矩阵,
C
=
A
B
=
[
c
11
c
12
⋯
c
1
n
c
21
c
22
⋯
c
2
n
⋯
⋯
⋱
⋮
c
m
1
c
m
2
⋯
c
m
n
]
C=AB=\left[ \begin{matrix} {{c}_{11}} & {{c}_{12}} & \cdots & {{c}_{1n}} \\ {{c}_{21}} & {{c}_{22}} & \cdots & {{c}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {{c}_{m1}} & {{c}_{m2}} & \cdots & {{c}_{mn}} \\ \end{matrix} \right]
C=AB=⎣
⎡c11c21⋯cm1c12c22⋯cm2⋯⋯⋱⋯c1nc2n⋮cmn⎦
⎤其中,矩阵
C
C
C中的元素满足
c
i
j
=
∑
k
=
1
s
a
i
k
b
k
j
{{c}_{ij}}=\sum_{k=1}^{s}{{a}_{ik}}{{b}_{kj}}
cij=k=1∑saikbkj举例
A
1
=
[
1
2
3
4
]
B
1
=
[
5
6
7
8
]
,
A
2
=
[
1
2
3
1
2
3
]
B
2
=
[
1
2
3
]
A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\;
A1=[1324]B1=[5768],A2=[112233]B2=⎣
⎡123⎦
⎤
A
1
B
1
=
[
19
22
43
50
]
,
A
2
B
2
=
[
14
14
]
A_1B_1 = \begin{bmatrix}19 & 22 \\43 & 50\end{bmatrix}, \;\;\;\; A_2B_2 = \begin{bmatrix}14&14\end{bmatrix}
A1B1=[19432250],A2B2=[1414]numpy实现
import numpy as np
A1 = np.array([[1,2],[3,4]])
B2 = np.array([[5,6],[7,8]])
A2 = np.array([[1,2,3],[1,2,3]])
B2 = np.array([1,2,3])
## 数量积 使用np.dot
print(np.dot(A1,B1))
print(np.dot(A2,B2))
此外,numpyt提供了numpy.inner()
函数,从字面意思理解是内积,其针对向量numpy.inner()
与numpy.dot()
输出一致,但针对矩阵有所不同。
print(np.inner(A1,B1))
输出为
[
17
23
39
53
]
\begin{bmatrix}17 & 23 \\39 & 53\end{bmatrix}
[17392353]
其中,
17
=
1
×
5
+
2
×
6
,
23
=
1
×
7
+
2
×
8
17=1 \times 5 +2\times 6,23 = 1\times 7 +2\times 8
17=1×5+2×6,23=1×7+2×8
39
=
3
×
5
+
4
×
6
,
53
=
3
×
7
+
4
×
8
39 = 3\times 5 +4\times 6,53=3\times7 +4\times 8
39=3×5+4×6,53=3×7+4×8
print(np.inner(A2,B2))
输出为 [ 14 14 ] \begin{bmatrix}14&14\end{bmatrix} [1414]
2.2 矩阵的叉积
针对矩阵并不存在叉积的概念,numpy中针对矩阵的叉积运算是按照向量的叉积进行运算。
举例
A
1
=
[
1
2
3
4
]
B
1
=
[
5
6
7
8
]
,
A
2
=
[
1
2
3
1
2
3
]
B
2
=
[
1
2
3
]
A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\;
A1=[1324]B1=[5768],A2=[112233]B2=⎣
⎡123⎦
⎤
A
1
×
B
1
=
[
−
4
−
4
]
,
A
2
×
B
2
=
[
0
0
0
0
0
0
]
A_1 \times B_1 = \begin{bmatrix}-4&-4\end{bmatrix}, \;\;\;\; A_2 \times B_2 = \begin{bmatrix}0 & 0&0 \\0 & 0&0\end{bmatrix}
A1×B1=[−4−4],A2×B2=[000000]numpy实现
import numpy as np
A1 = np.array([[1,2],[3,4]])
B1 = np.array([[5,6],[7,8]])
A2 = np.array([[1,2,3],[1,2,3]])
B2 = np.array([1,2,3])
## 叉积 使用np.cross
print(np.cross(A1,B1))
print(np.cross(A2,B2))
3. 元素积
元素积(element-wise product, point-wise product)又称哈达玛积(Hadamard product )、舒尔积、逐项积,对应元素相乘,结果还是向量/矩阵。
对于 n n n维向量 a ⃗ = ( a 1 , a 1 , . . . , a n ) , b ⃗ = ( b 1 , b 2 , . . . , b n ) \vec{a}=\left( {{a}_{1}},{{a}_{1}},..., {{a}_{n}} \right)~,\vec{b}=\left( {{b}_{1}},{{b}_{2}} ,...,{{b}_{n}}\right) a=(a1,a1,...,an) ,b=(b1,b2,...,bn),两者的元素积: a ⃗ ∗ b ⃗ = ( a 1 b 1 , a 2 b 2 , . . . , a n b n ) \vec{a} * \vec{b}= ({{a}_{1}{b}_{1}},{{a}_{2}}{{b}_{2}},...,{{a}_{n}}{{b}_{n}} ) a∗b=(a1b1,a2b2,...,anbn)对于同阶矩阵( m × n m \times n m×n) A A A、 B B B,两者的哈达玛(Hadamard)积: A ∘ B = [ a 11 b 11 a 12 b 12 ⋯ a 1 n b 1 n a 21 b 21 a 22 b 22 ⋯ a 2 n b 2 n ⋯ ⋯ ⋱ ⋮ a m 1 b m 1 a m 2 b m 2 ⋯ a m n b m n ] A \circ B = \left[ \begin{matrix} {{a}_{11}{b}_{11}} & {{a}_{12}{b}_{12}} & \cdots & {{a}_{1n}{b}_{1n}} \\ {{a}_{21}{b}_{21}} & {{a}_{22}{b}_{22}} & \cdots & {{a}_{2n}{b}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {{a}_{m1}{b}_{m1}} & {{a}_{m2}{b}_{m2}} & \cdots & {{a}_{mn}{b}_{mn}} \\ \end{matrix} \right] A∘B=⎣ ⎡a11b11a21b21⋯am1bm1a12b12a22b22⋯am2bm2⋯⋯⋱⋯a1nb1na2nb2n⋮amnbmn⎦ ⎤
numpy中 使用
np.multiply
或*
实现元素积
举例
向量: a ⃗ = ( 1 , 2 , 3 ) b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a=(1,2,3)b=(4,5,6) a ⃗ ∘ b ⃗ = ( 4 , 10 , 18 ) \vec{a} \circ \vec{b} =(4 , 10 , 18) a∘b=(4,10,18)矩阵: A 1 = [ 1 2 3 4 ] B 1 = [ 5 6 7 8 ] , A 2 = [ 1 2 3 1 2 3 ] B 2 = [ 1 2 3 ] A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\; A1=[1324]B1=[5768],A2=[112233]B2=⎣ ⎡123⎦ ⎤ A 1 ∘ B 1 = [ 5 12 21 32 ] , A 2 ∘ B 2 = [ 1 4 9 1 4 9 ] A_1 \circ B_1 = \begin{bmatrix}5 & 12 \\21 & 32\end{bmatrix}, \;\;\;\; A_2 \circ B_2 = \begin{bmatrix}1 & 4 & 9\\1 & 4 & 9\end{bmatrix}\;\;\;\; A1∘B1=[5211232],A2∘B2=[114499]
import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6])
A1 = np.array([[1,2],[3,4]])
B1 = np.array([[5,6],[7,8]])
A2 = np.array([[1,2,3],[1,2,3]])
B2 = np.array([1,2,3])
## 数量积 使用np.multiply或*
print(np.multiply(a,b))
print(np.multiply(A1,B1))
print(np.multiply(A2,B2)) #阶数不一致的,numpy将进行广播确保一致
4. 克罗内克积
克罗内克积(Kronecker product)是两个任意大小的矩阵间的运算。
对于对于 A A A矩阵( m × n m \times n m×n阶), B B B矩阵( p × q p \times q p×q阶): A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] B = [ b 11 b 12 ⋯ b 1 q b 21 b 22 ⋯ b 2 q ⋯ ⋯ ⋱ ⋮ b p 1 b p 2 ⋯ b p q ] A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \cdots & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & \cdots & {{a}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {{a}_{m1}} & {{a}_{m2}} & \cdots & {{a}_{mn}} \\ \end{matrix} \right]~~~~~B=\left[ \begin{matrix} {{b}_{11}} & {{b}_{12}} & \cdots & {{b}_{1q}} \\ {{b}_{21}} & {{b}_{22}} & \cdots & {{b}_{2q}} \\ \cdots & \cdots & \ddots & \vdots \\ {{b}_{p1}} & {{b}_{p2}} & \cdots & {{b}_{pq}} \\ \end{matrix} \right] A=⎣ ⎡a11a21⋯am1a12a22⋯am2⋯⋯⋱⋯a1na2n⋮amn⎦ ⎤ B=⎣ ⎡b11b21⋯bp1b12b22⋯bp2⋯⋯⋱⋯b1qb2q⋮bpq⎦ ⎤两者的克罗内克积 C = A ⊗ B C=A \otimes B C=A⊗B是 m p × n q mp×nq mp×nq阶的分块矩阵: C = A ⊗ B = [ a 11 B a 12 B ⋯ a 1 n B a 21 B a 22 B ⋯ a 2 n B ⋯ ⋯ ⋱ ⋮ a m 1 B a m 2 B ⋯ a m n B ] C=A \otimes B = \left[ \begin{matrix} {{a}_{11}B} & {{a}_{12}B} & \cdots & {{a}_{1n}} B \\ {{a}_{21}} B& {{a}_{22}}B & \cdots & {{a}_{2n}} B \\ \cdots & \cdots & \ddots & \vdots \\ {{a}_{m1}} B& {{a}_{m2}} B& \cdots & {{a}_{mn}}B \\ \end{matrix} \right] C=A⊗B=⎣ ⎡a11Ba21B⋯am1Ba12Ba22B⋯am2B⋯⋯⋱⋯a1nBa2nB⋮amnB⎦ ⎤ = [ a 11 b 11 a 11 b 12 ⋯ a 11 b 1 q ⋯ ⋯ a 1 n b 11 a 1 n b 12 ⋯ a 1 n b 1 q a 11 b 21 a 11 b 22 ⋯ a 11 b 2 q ⋯ ⋯ a 1 n b 21 a 1 n b 22 ⋯ a 1 n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a 11 b p 1 a 11 b p 2 ⋯ a 11 b p q ⋯ ⋯ a 1 n b p 1 a 1 n b p 2 ⋯ a 1 n b p q ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ a m 1 b 11 a m 1 b 12 ⋯ a m 1 b 1 q ⋯ ⋯ a m n b 11 a m n b 12 ⋯ a m n b 1 q a m 1 b 21 a m 1 b 22 ⋯ a m 1 b 2 q ⋯ ⋯ a m n b 21 a m n b 22 ⋯ a m n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a m 1 b p 1 a m 1 b p 2 ⋯ a m 1 b p q ⋯ ⋯ a m n b p 1 a m n b p 2 ⋯ a m n b p q ] =\left[ \begin{matrix} {{a}_{11}{b}_{11}} & {{a}_{11}{b}_{12}} & \cdots & {{a}_{11}} {b}_{1q} & \cdots & \cdots &{{a}_{1n}{b}_{11}} & {{a}_{1n}{b}_{12}} & \cdots & {{a}_{1n}} {b}_{1q} \\ {{a}_{11}{b}_{21}} & {{a}_{11}{b}_{22}} & \cdots & {{a}_{11}} {b}_{2q} & \cdots & \cdots &{{a}_{1n}{b}_{21}} & {{a}_{1n}{b}_{22}} & \cdots & {{a}_{1n}} {b}_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ {{a}_{11}{b}_{p1}} & {{a}_{11}{b}_{p2}} & \cdots & {{a}_{11}} {b}_{pq} & \cdots & \cdots &{{a}_{1n}{b}_{p1}} & {{a}_{1n}{b}_{p2}} & \cdots & {{a}_{1n}} {b}_{pq} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ {{a}_{m1}{b}_{11}} & {{a}_{m1}{b}_{12}} & \cdots & {{a}_{m1}} {b}_{1q} & \cdots & \cdots &{{a}_{mn}{b}_{11}} & {{a}_{mn}{b}_{12}} & \cdots & {{a}_{mn}} {b}_{1q} \\ {{a}_{m1}{b}_{21}} & {{a}_{m1}{b}_{22}} & \cdots & {{a}_{m1}} {b}_{2q} & \cdots & \cdots &{{a}_{mn}{b}_{21}} & {{a}_{mn}{b}_{22}} & \cdots & {{a}_{mn}} {b}_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ {{a}_{m1}{b}_{p1}} & {{a}_{m1}{b}_{p2}} & \cdots & {{a}_{m1}} {b}_{pq} & \cdots & \cdots &{{a}_{mn}{b}_{p1}} & {{a}_{mn}{b}_{p2}} & \cdots & {{a}_{mn}} {b}_{pq} \\ \end{matrix} \right] =⎣ ⎡a11b11a11b21⋮a11bp1⋮⋮am1b11am1b21⋮am1bp1a11b12a11b22⋮a11bp2⋮⋮am1b12am1b22⋮am1bp2⋯⋯⋱⋯⋯⋯⋱⋯a11b1qa11b2q⋮a11bpq⋮⋮am1b1qam1b2q⋮am1bpq⋯⋯⋯⋱⋯⋯⋯⋯⋯⋯⋱⋯⋯⋯a1nb11a1nb21⋮a1nbp1⋮⋮amnb11amnb21⋮amnbp1a1nb12a1nb22⋮a1nbp2⋮⋮amnb12amnb22⋮amnbp2⋯⋯⋱⋯⋯⋯⋱⋯a1nb1qa1nb2q⋮a1nbpq⋮⋮amnb1qamnb2q⋮amnbpq⎦ ⎤
numpy中 使用
np.kron
实现
举例 A 1 = [ 1 2 3 ] B 1 = [ 4 5 6 ] A 2 = [ 1 2 3 4 ] B 2 = [ 5 6 7 8 ] A 3 = [ 1 2 3 1 2 3 ] B 3 = [ 1 2 3 ] A_1 = \begin{bmatrix}1 \\ 2\\ 3 \end{bmatrix}\;B_1 = \begin{bmatrix}4\\5\\6 \end{bmatrix} \;A_2 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;B_2 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix} \; A_3 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;B_3 = \begin{bmatrix}1\\2\\3 \end{bmatrix} A1=⎣ ⎡123⎦ ⎤B1=⎣ ⎡456⎦ ⎤A2=[1324]B2=[5768]A3=[112233]B3=⎣ ⎡123⎦ ⎤ A 1 ⊗ B 1 = [ 4 5 6 8 10 12 12 15 18 ] T A_1 \otimes B_1={\begin{bmatrix}4 & 5 & 6 & 8 &10 & 12 & 12 & 15&18\end{bmatrix}}^T A1⊗B1=[45681012121518]T A 2 ⊗ B 2 = [ 5 6 10 12 7 8 14 16 15 18 20 24 21 24 28 32 ] A_2 \otimes B_2 = \begin{bmatrix}5 &6&10&12 \\7 & 8&14&16\\15 & 18&20&24 \\21 &24&28&32\end{bmatrix} A2⊗B2=⎣ ⎡5715216818241014202812162432⎦ ⎤ A 3 ⊗ B 3 = [ 1 2 3 2 4 6 3 6 9 1 2 3 2 4 6 3 6 9 ] T A_3\otimes B_3 = { \begin{bmatrix}1 & 2&3 &2&4&6&3&6 & 9\\1 & 2&3 &2&4&6&3&6 & 9\end{bmatrix}}^T A3⊗B3=[112233224466336699]T
import numpy as np
A1 = np.array([1,2,3])
B1 = np.array([4,5,6])
A2 = np.array([[1,2],[3,4]])
B2 = np.array([[5,6],[7,8]])
A3 = np.array([[1,2,3],[1,2,3]])
B3 = np.array([1,2,3])
## 克罗内克积 使用np.kron
print(np.kron(A1,B1))
print(np.kron(A2,B2))
print(np.kron(A3,B3))