好吧,这道题有两种解法
第一种估计是大家一下子就想到的:
暴力递归!!(很明显不是正解)
粘一个我的代码
#include<cstdio>
using namespace std;
int n,cnt=1;
void func(int x){
for(int i=1;i<=x/2;i++){
cnt++;
func(i);
}
}
int main(){
scanf("%d",&n);
func(n);
printf("%d\n",cnt);
}
这个递归大概能骗过n=500,然而题目中是n<=1000 所以正解肯定不是暴力
正解其实是递推(也可以说是简单DP)
先粘个代码再解释
#include<cstdio>
using namespace std;
int main(){
int n,cnt=1,i,f[1010];
f[0]=f[1]=1;
scanf("%d",&n);
for(i=2;i<=n;i++){
if(i%2==0){
f[i]=f[i-1]+f[i/2];
}else{
f[i]=f[i-1];
}
}
printf("%d\n",f[n]);
}
在打代码之前,我们不妨手动模拟一下
n=0,n=1时,答案显然是1
n=2, ans=2; n=3,ans=2
n=4,ans=4; n=5,ans=4
n=6,ans=6; n=7,ans=6
相信大家也发现了,2n与2n+1(n为非负整数)的答案是一样的 这就是第一个规律
然后我们以n=8为例,手动模拟一下
一共有10组解
8 1 8 2 8 3 8 4 8
1 2 8 1 3 8 1 4 8 2 4 8
1 2 4 8
我打出的东西很像一棵搜索树。。。
当我们把8和8下面的左三棵子树放在一起(即8和下面三列),并将所有的8都改成7,我们能发现,我们得到了n=7时的所有解;
我们再把最右端的子树(即剩下的部分)中的所有8删去,我们得到了n=4时的所有解
就这样,我们可以得到一个递推式,
f(n)=f(n-1) //7=8-1
+f(n/2) //4=8/2
再结合之前发现的规律
就能得到:
n%2==0时
f(n)=f(n-1)+f(n/2)
n%2==1时
f(n)=f(n-1)
然后问题就迎刃而解啦