P1049 [NOIP2001 普及组] 装箱问题

31 篇文章 0 订阅
21 篇文章 1 订阅

在我们学习动态规划之前,拿到这道题,大部分人首先的思路是贪心,即每次选择体积最大的装入箱中。

但是,贪心存在这样一个问题:局部最优解不一定是全局最优解。例如:

箱子体积为4,物品有3件,体积分别为3,2,2

如果我们每一次选择体积最大的,只能选择体积为3的那一件,这样最后剩余体积为1。然而正确答案却是选择两件体积为2的,剩余体积为0。

因此,我们来看一看如何用动态规划解决此题:

因为每个物体,都有装与不装两种选择,所以我们得到状态转移方程:

f[j]=max(f[j],f[j-w[i]]+w[i]);

f[j] 为:当总容量为 j 时,不放第 i 件物品,所能装的最大体积。

f[j-w[i]]+w[i] 为:当总容量为 j 时,放了第 i 件物品后,所能装的最大体积。(即 j减去第 i 件物品体积 的容量能装的最大体积+第 i 件物品的体积。w[i] 为第 i 件物品体积)

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
int f[20005],w[35];
int main()
{
    int v,n;
    cin>>v>>n;
    for(int i=1;i<=n;i++)cin>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=v;j>=w[i];j--)
            f[j]=max(f[j],f[j-w[i]]+w[i]);
    cout<<v-f[v];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值