人工智能幻觉问题全面解析与解决方案

1. 定义与分类扩展

1.1 技术定义

  • 形式化定义:给定输入x,模型生成内容y的概率分布P(y|x)中,存在与真实数据分布Q(y|x)显著偏离的区域

  • 数学表达:幻觉率 H=Ex∼D[∑ymax⁡(0,P(y∣x)−Q(y∣x))]H=Ex∼D​[∑y​max(0,P(y∣x)−Q(y∣x))]

1.2 细粒度分类

graph TD
    A[幻觉类型] --> B[语义层]
    A --> C[知识层]
    A --> D[逻辑层]
    B --> B1(指代错误)
    B --> B2(语境偏离)
    C --> C1(事实错误)
    C --> C2(实体虚构)
    D --> D1(因果倒置)
    D --> D2(数学谬误)

2. 技术根源深度分析

2.1 数据缺陷

  • 噪声注入公式:Pnoise(x)=(1−α)Pclean(x)+αPrandom(x)

  • 长尾效应影响:知识覆盖率 Ck=∣Kmodel∩Kworld∣∣Kworld∣

2.2 架构局限

  • Transformer注意力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值