14、恶意 IP 流记录的自动聚类

恶意 IP 流记录的自动聚类

在网络安全领域,基于异常的入侵检测系统面临着大量警报的挑战,这影响了系统的整体可用性。为了减少警报数量,对恶意流量进行结构化组织是必要的。本文将介绍一种基于无监督学习的自动攻击聚类方案,用于基于流量的入侵检测系统。

1. 背景与现状

异常入侵检测系统将网络流量分为正常和恶意两类。在基于流量的检测中,IP 流记录会被分类,但大量的 IP 流使得手动检查十分困难。现有的一些技术存在诸多弱点,比如使用有效负载检查、需要标记的训练集,且评估使用的是非代表性的旧数据集。

2. 相关工作
  • Panacea 自动攻击聚类技术 :用于基于数据包的入侵检测系统,由警报信息提取器(AIE)和攻击聚类引擎(ACE)两个模块组成。AIE 从入侵检测系统接收警报并提取字节序列,ACE 进行攻击数据包的聚类。聚类过程分两个主要阶段,先训练 ACE 构建聚类模型,训练完成后可自动分类新警报,使用支持向量机(SVM)和 RIPPER 规则学习器对相似攻击警报进行分组。
  • Rieck 等人的恶意软件自动聚类框架 :应用机器学习技术,使用基于原型的聚类和聚类算法识别新型恶意软件类别,并将未知恶意软件分配到已发现的类别中。先在沙箱环境中监控恶意软件行为并生成报告,将报告转换为向量空间模型,再应用聚类技术分析恶意软件行为。
  • Bateni 等人的警报关联技术 :使用模糊逻辑和人工免疫系统(AIS),计算两个警报之间的关联度以提取攻击场景。为每对输入警报创建特征向量,与一组模糊规则匹配,根据匹配情况使
源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值