常用数学建模知识点及方法总结(1)(2021-8-10)

本文详细总结了数据科学中常用的综合评价方法,包括专家评价、运筹学方法(如AHP、FCE、DEA)、统计与经济方法(如TOPSIS、主次分析、费用效益分析)、新型评价方法(如神经网络、灰色系统)以及混合方法。此外,还涵盖了数值计算的插值和拟合、假设检验、回归分析、图论、分类与聚类算法、时间序列分析和预测方法。这些技术在解决实际问题中发挥着重要作用,涉及领域广泛,如决策支持、数据分析和预测建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用数模知识点及方法总结

一、综合评价方法

根据各评价方法所依据的理论基础,现代综合评价方法大致分为以下四大类:

1、 专家评价方法

2、运筹学与其他数学方法

2.1、层次分析法(AHP)

2.2 、模糊综合评判法(FCE)

2.3 、数据包络分析法(DEA)

3 、基于统计和经济的方法

3.1 、TOPSIS评价法,优化可用熵权法

3.2 、主次分析法和因子分析法

主成分分析法通过克服相关性、重叠性,用较少的变量来代替原来较多的变量,而这种代替可以反映原来多个变量的大部分信息,这实际上是一种“降维”的思想。
因子分析法用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。

3.3 、费用效益法

4 、新型评价方法

4.1 、人工神经网络评价方法(ANN)

基于BP人工神经网络的综合评价方法具有运算速度快、问题求解效率高、自学习能力强、容错能力强等优点,较好地模拟了评价专家进行综合评价的过程,因而具有广阔的应用前景。

4.2 、灰色综合评价法

灰色系统理论主要是利用已知信息来确定系统的未知信息,使系统由“灰”变“白”。其最大特点是对样本量没有严格的要求,不要求服从任何分布。灰色关联度便是灰色系统理论应用的主要方面之一。

5、混合方法:组合评价法

二、插值和拟合(数值计算方法)

1、插值

1.1、牛顿插值
1.2、拉格朗日插值
1.3、埃米尔特插值
1.4、样条插值

2、拟合

2.1最小二乘拟合
2.2最佳逼近(最佳平方、最佳一致等)

三、假设检验(概率论与数理统计方法)

1、相关系数

1.1、皮尔逊相关系数

皮尔逊相关系数适用于呈正态分布的连续变量。对离群值敏感。通常会用t检验之类的方法来进行皮尔逊相关性系数检验。需要先确认这两个变量是线性相关的。
连续数据,正态分布,线性关系,均满足,用皮尔逊相关系数最恰当。若数据有定序,则用斯皮尔曼秩相关系数。

1.2、斯皮尔曼相关系数

另一种定义:等级之间的皮尔逊相关系数。
皮尔逊相关系数适用于线性关系,而斯皮尔曼相关系数适用于单调关系(线性关系的斜率是固定的)。皮尔逊相关系数使用元数据进行计算的,而斯皮尔曼相关系数是基于秩计算的。

1.3、肯德尔相关系数

肯德尔相关系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过,它的目标对象是有序的类别变量,比如名次、年龄段、肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)等。它可以度量两个有序变量之间单调关系强弱。

1.4、区别和选择

与皮尔逊相关系数相比,斯皮尔曼相关系数、肯德尔相关系数,是基于数据秩的相关系数。由于这些估计量操作的是秩,而非数据值,所以它们对离群值稳健, 并可以处理特定类型的非线性关系。多数情况下, 基于秩的估计量适用于小规模的数据集以及特定的假设检验。
(参考:
1、什么是相关系数
2、皮尔逊、斯皮尔曼、肯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值