常用数模知识点及方法总结
一、综合评价方法
根据各评价方法所依据的理论基础,现代综合评价方法大致分为以下四大类:
1、 专家评价方法
2、运筹学与其他数学方法
2.1、层次分析法(AHP)
2.2 、模糊综合评判法(FCE)
2.3 、数据包络分析法(DEA)
3 、基于统计和经济的方法
3.1 、TOPSIS评价法,优化可用熵权法
3.2 、主次分析法和因子分析法
主成分分析法通过克服相关性、重叠性,用较少的变量来代替原来较多的变量,而这种代替可以反映原来多个变量的大部分信息,这实际上是一种“降维”的思想。
因子分析法用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。
3.3 、费用效益法
4 、新型评价方法
4.1 、人工神经网络评价方法(ANN)
基于BP人工神经网络的综合评价方法具有运算速度快、问题求解效率高、自学习能力强、容错能力强等优点,较好地模拟了评价专家进行综合评价的过程,因而具有广阔的应用前景。
4.2 、灰色综合评价法
灰色系统理论主要是利用已知信息来确定系统的未知信息,使系统由“灰”变“白”。其最大特点是对样本量没有严格的要求,不要求服从任何分布。灰色关联度便是灰色系统理论应用的主要方面之一。
5、混合方法:组合评价法
二、插值和拟合(数值计算方法)
1、插值
1.1、牛顿插值
1.2、拉格朗日插值
1.3、埃米尔特插值
1.4、样条插值
2、拟合
2.1最小二乘拟合
2.2最佳逼近(最佳平方、最佳一致等)
三、假设检验(概率论与数理统计方法)
1、相关系数
1.1、皮尔逊相关系数
皮尔逊相关系数适用于呈正态分布的连续变量。对离群值敏感。通常会用t检验之类的方法来进行皮尔逊相关性系数检验。需要先确认这两个变量是线性相关的。
连续数据,正态分布,线性关系,均满足,用皮尔逊相关系数最恰当。若数据有定序,则用斯皮尔曼秩相关系数。
1.2、斯皮尔曼相关系数
另一种定义:等级之间的皮尔逊相关系数。
皮尔逊相关系数适用于线性关系,而斯皮尔曼相关系数适用于单调关系(线性关系的斜率是固定的)。皮尔逊相关系数使用元数据进行计算的,而斯皮尔曼相关系数是基于秩计算的。
1.3、肯德尔相关系数
肯德尔相关系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过,它的目标对象是有序的类别变量,比如名次、年龄段、肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)等。它可以度量两个有序变量之间单调关系强弱。
1.4、区别和选择
与皮尔逊相关系数相比,斯皮尔曼相关系数、肯德尔相关系数,是基于数据秩的相关系数。由于这些估计量操作的是秩,而非数据值,所以它们对离群值稳健, 并可以处理特定类型的非线性关系。多数情况下, 基于秩的估计量适用于小规模的数据集以及特定的假设检验。
(参考:
1、什么是相关系数
2、皮尔逊、斯皮尔曼、肯