201806 数据处理 SQL、python、shell 哪家强...速度PK(上篇)

最近在工作中,进行大量的数据处理,使用的是mysql5.7.22,发现当数据量级达到几十万之后,SQL执行速度明显变慢。尤其是当多个表join时,于是就尝试用python pandas进行数据处理,发现运行速度明显比SQL运行速度快。于是,决定比较一下千万数据量级之下,SQL、pandas、shell在数据处理上的优劣势。

配置:ubuntu系统64位,8G内存,intel i7处理器

软件环境:mysql5.7.22  , python3下的pandas ,  shell

测试数据:

数据是使用python随机生成的,订单表的时间跨度是2015年-2018年,共计2000万行,csv文件大小是909M;用户表共计500万行,csv文件大小是284M。

表1:订单表  orderid、ordertime、uid、amount、status        

表2:用户表  uid、gender、birthday、mobile、email                 

使用shell、pandas的话,直接访问,两个表的csv文件,逗号分隔符;mysql的话,将数据先导入到数据库。

一、单表查询   mysql  PK  shell

1、计数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值