分布函数的变上限积分的最大值问题

今天,帮别人做了个优化问题
问题是一个“分布函数的变上限积分的最大值问题”,
还涉及到了分布函数的逆,
“Inverse of the normal cumulative distribution function”
可能是我遇到过的比较难算的东西。
求解思想;
1.积分可分解化为求和SUM, 间距划的越小计算时间越长,间距过大精确度降低....
2.变上限积分同上,但间距要统一,不能因上限改变,间距改变,
解决方法:
function final_f=Cal_dis(x_F)
f=0;
x_temp=0;
while x_temp<x_F
    x_temp=x_temp+0.02; %space between
    f=f+0.02*normcdf(x_temp,10,2);
end
final_f=f;
3.最优化求解,由于做了以上的处理,目标函数不再具有可微性....
(也有其他方法),就不能在用牛顿法求下降方向了,我用的是类似仿真的方法在可行域内随机取点,选最优值(比较耗时)结果还行...
还在世个2维问题,要是高维就不好办了...
呵呵,有点成就感!
matlab;

norminv 逆正态累积分布函数
normpdf 正态分布概率密度函数
normcdf 正态累积分布函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值