Cpp环境【Code[VS]5226】物品选取

【问题描述】      

  小沐同学确信所有问题都有个多项式时间算法,为了证明,他决定自己去当一次旅行商,在上路之前,小 X 需要挑选一些在路上使用的物品,但他只有一个 能装体积为 m 的背包。显然,背包问题对小沐来说过于简单了,所以他希望你来帮他解决这个问题。
  小沐可以选择的物品有 n样,一共分为甲乙丙三类:
  1.甲类物品的价值随着你分配给他的背包体积变化,它的价值与分配给它的体积满足函数关系式,v(x) = A*x^2-B*x,x表示分配给该物品的体积,为非负整数,A,B是每个甲类物品的两个参数。注意每个体积的甲类物品只有一个。
  2.乙类物品的价值 A和体积 B都是固定的,但是每个乙类物品都有个参数C,表示这个物品可供选择的个数。
  3.丙类物品的价值 A和体积 B也是固定的,但是每个丙类物品可供选择的个数都是无限多个。
  你最终的任务是确定小沐的背包最多能装有多大的价值上路。

【输入格式】  

  第一行两个整数 n,m,表示背包物品的个数和背包的体积;
  接下来 n行,每行描述一个物品的信息。第一个整数 x,表示物品的种类:
  若 x 为1表示甲类物品,接下来两个整数 A,B,为A类物品的两个参数;
  若 x 为2表示乙类物品,接下来三个整数 A,B,C。A表示物品的价值,B表示它的体积,C 表示它的个数;
  若 x 为3表示丙类物品,接下来两个整数A,B。A表示它的价值,B表示它的体积。

【输出格式】  

  仅一行为一个整数,表示小 X的背包能装的最大价值。

【输入样例】  

【样例1】
 1 0
 1 1 1

【样例2】
 4 10
 2 1 2 1
 1 1 2
 3 5 2
 2 200 2 3

【输出样例】  

【样例1】
 0

【样例2】
 610

【数据范围】  

对于50%的数据,只有乙和丙两类物品;
对于70%的数据,1<=n<=100, 1<=m<=500,0<=A,B,C<=200;
对于100%的数据,1<=n<=100, 1<=m<=2000,0<=A,B,C<=200;

【来源】

复赛模拟题
Code[VS]5226 原题传送矩阵
重庆一中题库 原题传送矩阵

【思路梳理】

  背包问题,互相伤害,乙丙显然是一样的思路很容易解决主要还是看甲类:枚举给甲类的第i样物品分配多少即可!!!
  可以证明的是:如果要选择某样甲类物品i,只要它的参数a[i].A是一个正数,那么显然选择其的体积越大,就越划算,换句话来说:这个物品一定。不严格证明如下:

当a[i].A是一个正数时,其价值与体积成二次函数关系:
    这里写图片描述
    定义域为该物品能够选取的体积,值域为其对应的价格

   根据初等数学知识可以知道,二次函数为凹函数,那么其选取的体积越大,价值也就越大是必然的,显然我们还可以根据图像知道斜率也随之增大,也就是说单位体积的价值在增大,那么选取x个单位体积的该物品一定比选取x-1个单位的该物品的结果更优。
这里写图片描述

可列出如下的状态函数&状态转移方程,时间复杂度这里写图片描述

d(i,j)=从前i样物品中任意选择总体积不超过j的物品所能够形成的最大价值

d[i][j]=
Case1: max{ d(i-1,j-x)+a[i].A*x*x-a[i].B*x | 0<=x<=j,x代表选择分配的体积 }
Case2:max{d(i-1,j-k*a[i].B)+a[i].A*k | 0<=k<=min(a[i].C,j/a[i].B)}
Case 3: max( d(i-1,j-k*a[i].B)+a[i].A*k | 0<=k<=j/a[i].B )

【Cpp代码】
#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 105
#define maxm 2005
using namespace std;
int n,m,d[maxm];
struct data
{
    int type,A,B,C;
}a[maxn];

void dp()
{
    //d(i,j)=从前i样物品中任意选择总体积不超过j的物品所能够形成的最大价值
    //          Case 1:  max{ d(i-1,j-x)+a[i].A*x*x-a[i].B*x | 0<=x<=j,x代表选择分配的体积  }
    //d(i,j)= { Case 2:  max{ d(i-1,j-k*a[i].B)+a[i].A*k     | 0<=k<=min(a[i].C,j/a[i].B)   }
    //          Case 3:  max( d(i-1,j-k*a[i].B)+a[i].A*k     | 0<=k<=j/a[i].B

    for(int i=1;i<=n;i++)
    {
        if(a[i].type==1)
        {
            for(int j=m;j>=0;j--)
            for(int x=j;x>=0;x--)
                d[j]=max(d[j],d[j-x]+a[i].A*x*x-a[i].B*x);
        }

        if(a[i].type==2)
        {
            for(int j=m;j>=0;j--)
            for(int k=a[i].C;k>=0;k--)if(j-k*a[i].B>=0)
                d[j]=max(d[j],d[j-k*a[i].B]+a[i].A*k);
        }

        if(a[i].type==3)
        {
            for(int j=a[i].B;j<=m;j++)
                d[j]=max(d[j],d[j-a[i].B]+a[i].A);
        }

    }

    cout<<d[m];
}

int main()
{
//  freopen("in.txt","r",stdin);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i].type);
        if(a[i].type==1)        scanf("%d%d",&a[i].A,&a[i].B);
        else if(a[i].type==2)       
        scanf("%d%d%d",&a[i].A,&a[i].B,&a[i].C);
        else if(a[i].type==3)       
        {
            scanf("%d%d",&a[i].A,&a[i].B);
            a[i].C=2005;//物品的体积至少为1,背包最大容积为2000,所以可以认为2005为无限个 
        }
    }

    dp();   

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值