Stata数据处理:数据框使用教程 在 Stata16 以后,Stata 开始允许使用数据框。这意味着我们可以将多个数据集存储在 Stata 内存中,并对不同的数据集同时进行处理。对于经常处理单一大型数据的人来说,他们再也不用总是 了,也不用再将无数个数据集合并到一起,这大大提高了数据处理的效率。为了实现上述目的,我们需要学会如何使用数据框,以及如何在不同的数据框之间建立联系。...
Stata绘图:峰峦图绘制joy_plot 本文将介绍 joy_plot 命令,该命令由 Fernando (2022) 开发,主要用于绘制 joyplot。joyplot 是一种看起来犹如山水画一般的层峦叠嶂图形,由于外形与山峦类似,其中文名为山峦图、峰峦图或叠嶂图。这种图形本质上是一种密度图,能够同时显示多组数据的变化趋势,因此可以被用于组间对比分析的可视化。...
工具变量:顶刊中的Shock-IV整理 Atanasov 和 Black (2021) 汇总整理了 2006 年—2015 年利用外生冲击作为工具变量的 32 篇文章,这些文章涵盖 24 种不同冲击类型。本文将对这 32 篇文章涉及的各类冲击事件、工具变量和测量变量进行汇总,希望可以帮助大家了解 Shock-IV,并使用规范的方法进行因果推论。...
Stata:正则表达式教程 Stata 是一个应用相当广泛的软件,其中还有很多隐藏的功能、快捷方式和命令,可以大大提升用户体验!本文着力介绍一些 Stata 中的好用小技巧,例如在图表和 do 文档中设置标签,自动缩放图轴,暂元,数据管理的快捷方式等。在进行本文的操作时,我们建议读者使用 Stata16 及以上版本。...
全面解读Logit模型 给定一组协变量 ,一个二元被解释变量 的期望值等于以下概率:在线性概率模型 (LPM) 中,这一条件概率的表达式为 ,其中 可以通过 OLS 来估计。但是线性概率模型的最大问题是估计出来的概率可能会超过 区间。因此对于二元被解释变量,我们往往会采用 Logistic 方程来建模,具体而言:在 Stata 中, 的极大似然估计值可以通过 命令估计。为了更好理解,我们使用一份包含 753 个已婚女性的调查数据 (Mroz 1987) 来估计劳动方程。......
工具变量:Shock-IV中预处理平衡的必要性 越来越多的会计和金融学者强调因果效应的识别,并且常用方法是利用看似满足因果推理的冲击。然而,当前利用冲击的实践往往忽略了处理企业和控制企业之间预处理平衡的需要——我们将这一概念定义为共同支持 (common support)、预处理协变量和结果的平衡 (balance pretreatment covariates and outcomes),以及平行预处理趋势 (parallel pretreatment trends)。...
有哪些东西是你读博以后才懂的? 有人说读博就像是一个围城,外面的人向往羡慕,里面的人迷茫不已。有哪些东西是你读博以后才懂的?小编针对这一知乎热议话题进行了一番梳理 -Link-。 想清楚为什么要读博,最重要的是祛魅。从小到大的教育中给我们灌输了很多迷信,比如:上了大学就好了,科学家光荣伟大,学术圈单纯简单等等。而现实中,读博的成本和代价可能会很大,也可能不会很顺利:不一定能跟上一位负责的导师,不一定能做喜欢的研究方向,不一定发得了文章,不一定承受得了读博的压力。...
论文答辩之技巧、规则与常识 到了五六月份,很多即将毕业的同学都将迎来自己校园生活的最后一站 —— 学位论文答辩。感慨这几年校园时光的同时,即将面临答辩的小伙伴们心里是不是还多少有些紧张?的确,受疫情影响今年很多同学失去了向学长学姐面对面请教经验的机会。为了加深大家对答辩过程的了解,本文围绕论文答辩技巧这个话题整理了知乎上热心答主们的回答,希望对大家有所帮助。...
R语言随机指数图分析-statnet 复杂网络理论的基础点是图论,主要研究方法是梳理各要素在网络中的地位和各要素之间的关系。其中以节点代表要研究的要素,以边表示要素之间的关系。社会网络分析的精髓之处在于,从网络成员之间的关联角度出发,能够将分析视角扩展至社会现象乃至社会结构 (Borgatti 和 Foster,2003)。指数族随机图模型 (ERGM) 越来越多地应用于社会网络的研究。ERGM 是为了解释网络的全局结构,同时允许在微观层面上对联系预测进行推断。...
Stata绘图:绘制华夫饼图-waffle 华夫饼图 (Waffle Chart),或称为直角饼图,常用于直观展示百分比数据,因其类似华夫饼而得名。与传统的饼图相比较,华夫饼图表达的百分比更清晰和准确。它共有 100 个方格,每一个方格代表 1%,并通过不同的颜色展示数据特征。本文主要介绍如何使用 命令绘制华夫饼图。需要注意的是, 命令只能在 Stata 17 中运行。...
Stata绘图:绘制美观的散点图-superscatter superscatter命令创建了一个包含 y 变量对 x 变量的散点图。散点图的边缘显示了两个变量的边际分布图。用户可以选择将边缘分布显示为直方图 (默认值) 或核密度。同时 和 选项允许用户使用不同的标记符号或颜色绘制选定的观测值。用户还可以选择将两种分布的平均值、中间值或四分位数绘制成线条,覆盖边缘分布和散点图。这些线形成一个由四个单元格组成的网格 (如果选择了选项中间线或方法) 或 16 个单元格 (如果选择了四分位数)。...
金融数据哪里找——Akshare数据平台 AKShare 是基于 Python 的财经数据接口库,目的是实现对股票、期货、期权、基金、外汇、债券、指数、加密货币等金融产品的基本面数据、实时和历史行情数据、衍生数据从数据采集、数据清洗到数据落地的一套工具,主要用于学术研究目的。AKShare 的特点是获取的是相对权威的财经数据网站公布的原始数据,通过利用原始数据进行各数据源之间的交叉验证,进而再加工,从而得出科学的结论。...
Stata+Python:同花顺里爬取创历史新高的股票 中国A股市场上如何择股?有一类投资者偏好投资创历史新高的股票。其逻辑是股价创新高有创新高的道理,可能有很好的业绩支撑或者公司业务有突破性发展,只是当前消息还没有公布,所以有的资本市场的弄潮儿偏好这类股票。本文尝试利用 Stata 爬取同花顺数据中心提供的创历史新高股票数据,实现自动爬取每个交易日的数据,不过需要 Stata 中配置 Python 环境才可运行。 该爬虫难度不大,只需要把网页数据抓取得到即可。...
Stata绘图:回归系数可视化-multicoefplot 本文主要介绍由苏黎世联邦理工学院教授 Matteo Pinna 开发的,用于时间维度横截面分析的可视化操作命令 。该命令最大的优势是在横截面比较的同时,允许不同控制变量集下得到的点估计系数以及置信区间进行直接比较。...
Stata:自己动手做组间系数差异检验-bootstrap-bdiff 全文阅读:Stata:自己动手做组间系数差异检验-bootstrap-bdiff| 连享会主页目录 本文介绍了基于 Bootstrap (自抽样 / 自举法) 的组间系数检验方法及其 Stata 实现。具体思路如下:第一种思路:首先通过有放回的自抽样方法获得一系列经验样本 (Empirical Sample);然后在经验样本中根据其实际分组情况进行分组回归,从而获得分组回归系数差异统计量 的经验分布;最后通过检验 0 在 分布中的相对位置来检验 。第二种思路:首先通过有放回的自抽样方法获得一系列经验样
Stata与Python等价命令 目录1. 简介 2. multicoefplot 命令 3. 实例演示 3.1 数据处理 3.2 图像绘制 3.3 同时估计并可视化不同模型 4. 相关推文1. 简介本文主要介绍由苏黎世联邦理工学院教授 Matteo Pinna 开发的,用于时间维度横截面分析的可视化操作命令multicoefplot。该命令最大的优势是在横截面比较的同时,允许不同控制变量集下得到的点估计系数以及置信区间进行直接比较。全文.
Stata绘图:如何更高效的绘制图形 全文阅读:Stata绘图:如何更高效的绘制图形| 连享会主页目录1. 数据说明 2. 单变量图形绘制 2.1 连续变量 2.2 分类变量 3. 双变量图形绘制 3.1 连续—分类变量 3.2 连续—连续变量 3.3 分类—分类变量 3.4 分类—连续变量 4. 多变量图形绘制 5. 结语 6. 相关推文在论文写作中,图形在呈现研究数据方面起着关键的作用,并有助于验证数据分析的结果。然而,图形可能有时绘制不当,无法准确表达作者的观点,因此需要在发表之前进行反