连享会计量方法专题……
1. 地理加权回归模型简介
空间数据在地理学、经济学、环境学、生态学以及气象学等众多领域中广泛存在。根据 Tobler 提出的 「地理学第一定律」:任何事物之间都是空间相关的,距离越近的事物之间的空间相关性越大。因此,不同于传统的截面数据,空间数据的空间相关性会导致回归关系的空间非平稳性 (空间异质性)。为了探索空间数据的空间非平稳性, Brunsdon 等 (1996) 首次提出了 地理加权回归模型,设定如下:
Y i = β 0 ( u i , v i ) + ∑ j = 1 p β j ( u i , v i ) X i j + ε i (1) Y_i=\beta_0(u_i,v_i)+\sum_{j=1}^p\beta_j(u_i,v_i)X_{ij}+\varepsilon_i \tag{1} Yi=β0(ui,vi)+j=1∑pβj(ui,vi)Xij+εi(1)
其中, β j ( u , v ) ( j = 0 , 1 , ⋯ , p ) \beta_j(u,v)\ (j=0,1,\cdots,p) βj(u,v) (j=0,1,⋯,p) 为 「空间地理位置函数」。
以某城市的房屋价格 Y Y Y 和房屋面积 X X X 为例, 如果不考虑房屋的地理位置信息,可以建立一个简单的线性回归模型:
Y i = β X i + ε i (2) Y_i=\beta X_i+\varepsilon_i \tag{2} Yi=βXi+εi(2)
其中, β \beta β 为房屋的单位面积均价。实际中,处于不同位置的房屋价格可能会相差甚远,但是模型 ( 2 ) (2) (2) 却不能反映出这种异质性。因此,为了能够描述不同位置房屋价格的差异性,我们可以建立如下模型:
Y i = β ( u i , v i ) X i + ε i (3) Y_i=\beta(u_i,v_i)X_i+\varepsilon_i \tag{3} Yi=β(ui,vi)Xi+εi(3)
其中, β ( u , v ) \beta(u,v) β(u,v) 是地理位置的函数。相比于模型 ( 2 ) (2) (2),模型 ( 3 ) (3) (3) 可以反映房屋价格随地理位置的变化而变化的规律。
上述例子说明有必要对空间数据建立地理加权回归模型来探索空间数据的非平稳性。
2. 地理加权回归模型的参数估计方法
根据 Tobler 地理学第一定律,距离越近的事物之间的相关性越大。故对于一个给定的地理位置 ( u 0 , v 0 ) (u_0,v_0) (u0,v0),可以采用局部加权最小二乘来估计 β j ( u 0 , v 0 ) ( j = 0 , 1 , ⋯ , p ) \beta_j(u_0,v_0)\ (j=0,1,\cdots,p) βj(u0,v0) (j=0,1,⋯,p),即
min ∑ i = 1 n [ y i − ∑ j = 1 p β j ( u 0 , v 0 ) x i j ] 2 w i ( u 0 , v 0 ) (4) \min \sum_{i=1}^n [y_i-\sum_{j=1}^p\beta_j(u_0,v_0)x_{ij}]^2w_i(u_0,v_0) \tag{4} mini=1∑n[yi−j=1∑pβj(u0,v0)xij]2wi(u0,v0)(4)
其中, { w i ( u 0 , v 0 ) } i = 1 n \{w_i(u_0,v_0)\}_{i=1}^n { wi(u0,v0)}i=1n 是在地理位置 ( u 0 , v 0 ) (u_0,v_0) (u0,v0) 处的空间权重。令 β ( u 0 , v 0 ) = ( β 0 ( u 0 , v 0 ) , β 1 ( u 0 , v 0 ) , ⋯ , β p ( u 0 , v 0 ) ) T , \boldsymbol \beta(u_0,v_0)=(\beta_0(u_0,v_0),\beta_1(u_0,v_0),\cdots,\beta_p(u_0,v_0))^{\rm T}, β(u