地理加权归回模型 (GWR) 参数估计

本文介绍了地理加权回归模型(GWR),用于探究空间数据的空间非平稳性。GWR通过局部加权最小二乘估计参数,并探讨了Gaussian、Bi-square和K-nearest neighbor等核函数。此外,文章讨论了窗宽h的选择准则,如交叉验证、广义交叉验证和AICc信息准则。最后,提到了在R软件中运用GWmodel包实施GWR的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:陈凤 (西安交通大学)

Stata连享会   计量专题 || 精品课程 || 简书推文 || 公众号合集

点击查看完整推文列表

连享会计量方法专题……

1. 地理加权回归模型简介

空间数据在地理学、经济学、环境学、生态学以及气象学等众多领域中广泛存在。根据 Tobler 提出的 「地理学第一定律」:任何事物之间都是空间相关的,距离越近的事物之间的空间相关性越大。因此,不同于传统的截面数据,空间数据的空间相关性会导致回归关系的空间非平稳性 (空间异质性)。为了探索空间数据的空间非平稳性, Brunsdon 等 (1996) 首次提出了 地理加权回归模型,设定如下:

Y i = β 0 ( u i , v i ) + ∑ j = 1 p β j ( u i , v i ) X i j + ε i (1) Y_i=\beta_0(u_i,v_i)+\sum_{j=1}^p\beta_j(u_i,v_i)X_{ij}+\varepsilon_i \tag{1} Yi=β0(ui,vi)+j=1pβj(ui,vi)Xij+εi(1)

其中, β j ( u , v )   ( j = 0 , 1 , ⋯   , p ) \beta_j(u,v)\ (j=0,1,\cdots,p) βj(u,v) (j=0,1,,p)「空间地理位置函数」

以某城市的房屋价格 Y Y Y 和房屋面积 X X X 为例, 如果不考虑房屋的地理位置信息,可以建立一个简单的线性回归模型:

Y i = β X i + ε i (2) Y_i=\beta X_i+\varepsilon_i \tag{2} Yi=βXi+εi(2)

其中, β \beta β 为房屋的单位面积均价。实际中,处于不同位置的房屋价格可能会相差甚远,但是模型 ( 2 ) (2) (2) 却不能反映出这种异质性。因此,为了能够描述不同位置房屋价格的差异性,我们可以建立如下模型:

Y i = β ( u i , v i ) X i + ε i (3) Y_i=\beta(u_i,v_i)X_i+\varepsilon_i \tag{3} Yi=β(ui,vi)Xi+εi(3)

其中, β ( u , v ) \beta(u,v) β(u,v) 是地理位置的函数。相比于模型 ( 2 ) (2) (2),模型 ( 3 ) (3) (3) 可以反映房屋价格随地理位置的变化而变化的规律。

上述例子说明有必要对空间数据建立地理加权回归模型来探索空间数据的非平稳性。

2. 地理加权回归模型的参数估计方法

根据 Tobler 地理学第一定律,距离越近的事物之间的相关性越大。故对于一个给定的地理位置 ( u 0 , v 0 ) (u_0,v_0) (u0,v0),可以采用局部加权最小二乘来估计 β j ( u 0 , v 0 )   ( j = 0 , 1 , ⋯   , p ) \beta_j(u_0,v_0)\ (j=0,1,\cdots,p) βj(u0,v0) (j=0,1,,p),即

min ⁡ ∑ i = 1 n [ y i − ∑ j = 1 p β j ( u 0 , v 0 ) x i j ] 2 w i ( u 0 , v 0 ) (4) \min \sum_{i=1}^n [y_i-\sum_{j=1}^p\beta_j(u_0,v_0)x_{ij}]^2w_i(u_0,v_0) \tag{4} mini=1n[yij=1pβj(u0,v0)xij]2wi(u0,v0)(4)

其中, { w i ( u 0 , v 0 ) } i = 1 n \{w_i(u_0,v_0)\}_{i=1}^n { wi(u0,v0)}i=1n 是在地理位置 ( u 0 , v 0 ) (u_0,v_0) (u0,v0) 处的空间权重。令 β ( u 0 , v 0 ) = ( β 0 ( u 0 , v 0 ) , β 1 ( u 0 , v 0 ) , ⋯   , β p ( u 0 , v 0 ) ) T , \boldsymbol \beta(u_0,v_0)=(\beta_0(u_0,v_0),\beta_1(u_0,v_0),\cdots,\beta_p(u_0,v_0))^{\rm T}, β(u

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值