medsem-中介效应:基于结构方程模型SEM的中介效应分析

本文介绍了在结构方程模型(SEM)框架下进行中介效应分析的Stata命令medsem。作者指出,SEM能更准确地估计中介效应,避免了传统回归分析的不足。medsem作为后估计命令,适用于复杂模型的中介效应分析,帮助研究者理解变量间的影响路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/1b8c1522f1256.html

目录


1. 背景介绍

在分析变量  对  的影响途径和机制时,「中介效应分析」是一个重要的工具。

在连享会以往的推文中,我们介绍了分析中介效应的各种方法,主要以传统的回归分析为基础。但我们仍然需要一个能对包括可观察变量和潜变量在内的所有回归方程同时进行估计的包,即能在结构方程模型(structural equation modelling, SEM)框架下进行中介效应分析。

由于传统的回归分析 (regression) 估计中介效应时的标准误较大 (参数估计不准确),且回归分析框架下使用 Sobel 检验时需要假定  服从正态分布。而通过 SEM 进行中介效应分析可以弥补上述缺陷,它能对所有模型参数同时进行估计,且 SEM 本身有助于中介效应分析,因此 SEM 方法应是进行中介效应分析的最佳框架 (Zhao et al., 2010 和 Iacobucci et al., 2007)。

本文我们介绍 Mehmetoglu(2018)提供的 Stata 命令 medsem,它有助于对非常复杂的模型进行适当而完整的中介效应分析。medsem 是在使用 Stata 命令 sem 估计结构方程模型(SEM)后,再进行使用的后估计命令(post estimation command)。本文将对这一命令进行介绍。

全文阅读:https://www.lianxh.cn/news/1b8c1522f1256.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值