Change-in-Change(CIC):双重变化模型

双重变换模型(CIC)由Athey和Imbens(2006)提出,旨在解决标准差分-in-differences(DID)模型在处理异质性时的局限性。CIC模型不依赖于平行趋势和线性形式假设,允许非线性和个体间差异。该模型通过非线性处理和时间变化,提供更准确的政策效果估计,尤其适用于存在不可观测异质性的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/c2864854d0b7b.html

目录

1. 双重变换模型简介

1.1 CIC 模型的应用背景

标准的 DID 模型使用条件较为严苛,即必须满足平行趋势(CT)假设、SUTV 条件,以及线性形式条件。

  • 平行趋势假设:1. 那些无法观测的因素不会影响某一特定个体进入处理组的概率,也就是说,每个样本是进入处理组还是控制组是完全随机的;2. 处理组和控制组个体的某些特征不会随着时间变化而呈现出不同的变化;

  • SUTVA 条件:政策干预只影响处理组,不会对控制组产生交互影响,或者政策干预不会产生外溢效应;

  • 线性形式条件:潜在结果变量同处理变量和时间变量满足线性条件。

在使用 DID 模型时,若研究者没有考虑以上条件,如忽略处理组和控制组之间随时间而变化但却无法观测到的异质性因素,则估计出来的政策效果就是有偏误的。

对于一个只有两期两组的极端数据,我们很难知道其是否符合平行趋势假设。因为政策(事件)在不同阶段下不仅可能改变估计结果的均值和方差,而且在个体之间的影响也会不同。因此,为了克服经典的 DID 无法解决的异质性处理效应问题,Athey 和 Imbens (2006) 提出了可以适用于连续型解释变量的非线性双重差分方法(Nonlinear Difference-in-Difference,NL-DID),也称为双重变换模型 (Changes in Changes,CIC) ,它不依赖于函数形式,也允许时间变化与政策干预下对不同个体影响有所不同。

全文阅读:https://www.lianxh.cn/news/c2864854d0b7b.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值