全文阅读:https://www.lianxh.cn/news/c2864854d0b7b.html
目录
1. 双重变换模型简介
1.1 CIC 模型的应用背景
标准的 DID 模型使用条件较为严苛,即必须满足平行趋势(CT)假设、SUTV 条件,以及线性形式条件。
-
平行趋势假设:1. 那些无法观测的因素不会影响某一特定个体进入处理组的概率,也就是说,每个样本是进入处理组还是控制组是完全随机的;2. 处理组和控制组个体的某些特征不会随着时间变化而呈现出不同的变化;
-
SUTVA 条件:政策干预只影响处理组,不会对控制组产生交互影响,或者政策干预不会产生外溢效应;
-
线性形式条件:潜在结果变量同处理变量和时间变量满足线性条件。
在使用 DID 模型时,若研究者没有考虑以上条件,如忽略处理组和控制组之间随时间而变化但却无法观测到的异质性因素,则估计出来的政策效果就是有偏误的。
对于一个只有两期两组的极端数据,我们很难知道其是否符合平行趋势假设。因为政策(事件)在不同阶段下不仅可能改变估计结果的均值和方差,而且在个体之间的影响也会不同。因此,为了克服经典的 DID 无法解决的异质性处理效应问题,Athey 和 Imbens (2006) 提出了可以适用于连续型解释变量的非线性双重差分方法(Nonlinear Difference-in-Difference,NL-DID),也称为双重变换模型 (Changes in Changes,CIC) ,它不依赖于函数形式,也允许时间变化与政策干预下对不同个体影响有所不同。