CFPS数据处理:少儿代答库与成人库匹配

全文阅读:CFPS数据处理:少儿代答库与成人库匹配| 连享会主页

目录

1. 引言

本文主要有两个目标:

  • 第一,将 CFPS 少儿代答库与成人库进行匹配;
  • 第二,围绕子女数量计算一些在未来研究中可能用到的变量,如成年子女数量、未成年子女数量、男孩数量、女孩数量、 0-3 岁子女数量等。

本文后续将围绕上述两个目标展开,并以 2018 年 CFPS 数据为例展示相关过程。

全文阅读:CFPS数据处理:少儿代答库与成人库匹配| 连享会主页

### CFPS 中夫妻匹配的相关码实现 为了在中国家庭追踪调查(CFPS)数据集中进行夫妻匹配,可以利用家庭问卷和个人问卷中的特定变量来识别并配对已婚夫妇。以下是基于Python和Pandas的一个简单示例,展示如何读取CFPS数据集,并从中提取出夫妻记录。 #### 数据准备 假设已经下载了包含个人层面信息的CSV文件`adult.csv`,其中至少包含了如下字段: - `fid`: 家庭ID - `pid`: 个人ID - `marriage_status`: 婚姻状态 (例如:1=未婚;2=已婚) - `spouse_pid`: 配偶PID(如果有的话) ```python import pandas as pd # 加载成人问卷数据 df_adult = pd.read_csv('data/adult.csv') # 过滤只保留已婚人士 married_df = df_adult[df_adult['marriage_status'] == 2] # 创建配偶DataFrame, 将每个人的配偶信息加入到原表中 couple_pairs = married_df.merge( married_df, left_on=['fid', 'spouse_pid'], right_on=['fid', 'pid'], suffixes=('_husband', '_wife') ) # 删除重复项(因为A-B 和 B-A 是相同的组合), 只保留一方视角即可 unique_couples = couple_pairs.drop_duplicates(subset=['pid_husband']) ``` 这段脚本首先加载了一个名为`adult.csv`的数据框,该数据框应该来自CFPS发布的成人问卷部分。接着筛选出了所有标记为“已婚”的个体,并尝试通过他们的`spouse_pid`找到对应的伴侣。最后一步是为了去除冗余条目——由于每一对夫妻会被两次记录下来(即丈夫指向妻子一次,反之亦然),因此需要删除这些重复项[^1]。 对于更复杂的场景,比如处理离婚再婚等情况,则可能还需要考虑更多维度的信息来进行精确匹配。此外,在实际操作过程中应当仔细阅读官方文档以理解各个变量的确切含义及其适用范围[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值