论文复现:装模做样的IV

阅读全文:论文复现:装模做样的IV (lianxh.cn)

作者:陈晓淇 (中山大学)
邮箱chenxq223@mail2.sysu.edu.cn

编者按:本文主要摘译自下文,特此致谢!
Source:Bazzi S, Clemens M A. Blunt instruments: Avoiding common pitfalls in identifying the causes of economic growth[J]. American Economic Journal: Macroeconomics, 2013, 5(2): 152-86. -PDF- -Appendix- -Replication-

1. 引言

经济学研究的一大课题是找出经济增长的原因。然而,探讨因果关系是困难的。许多研究人员通过使用工具变量来解决这一问题。工具变量需要满足两个条件:

  • 一是工具变量影响经济增长的唯一渠道是通过与之相关的内生解释变量;
  • 二是工具变量与内生解释变量具有良好的相关性。

不幸的是,在已发表的研究中,这些工具变量可能无效,较弱,或两者兼而有之。在本文中,我们首先讨论了在单一背景中使用看似有效的工具变量,为何在其他背景中可能是无效的。其次,本文提供的证据表明,弱工具变量可能会在应用中产生虚假的结果,特别是那些使用动态面板广义矩估计方法 (GMM) 的研究。

针对可能存在的问题,本文提出四种补救措施,以帮助研究人员克服这些困难:

  • 第一,在构建工具变量回归的理论基础时,应当考虑使用同一工具变量的其他已发表结果。
  • 第二,使用最新的方法来检验工具变量违反排除限制的敏感性。
  • 第三,用补充的方法来评估工具变量强度,打开 GMM 的“黑箱”。
  • 第四,使用弱工具稳健检验和估计量。

2. 强工具变量何时是无效的

假设增长由以下模型决定:

g=β0+∑j=1kβjxj+ε,(1)g=β0​+j=1∑k​βj​xj​+ε,(1)

其中,gg 是增长,xjxj​ 是 kk 个潜在内生的增长决定因素,ββ 是待估参数,εε 是具有零均值的误差项。假定我们有一个工具变量 zz,满足 E[zε]=0 ,Cov(z,xj)≠0 ∀jE[zε]=0,Cov(z,xj​)=0 ∀j。现在我们试着估计 kk 个独立的回归:

g=βj0+βjxj+εj,j=1,...,k(2)g=βj0​+βj​xj​+εj​,j=1,...,k(2)

在每一个回归中,xjxj​ 的工具变量为 zz,其中 εj≡∑l≠jβlxl+εεj​≡∑l=j​βl​xl​+ε。但是,除非对于所有 ℓ≠jℓ=j, βl=0βl​=0 (或者更难以置信的是 xj≈xlxj​≈xl​ ),否则 Cov(z,εj)=∑ℓ≠jβlCov(z,xℓ)≠0 ∀jCov(z,εj​)=∑ℓ=j​βl​Cov(z,xℓ​)=0 ∀j。而工具 zz 在每一个回归中都是无效的。

换句话说,如果现有的研究表明 zz 是 xlxl​ 的强工具,而 xlxl​ 没有包含在式(2)中,且 βlβl​ 不等于 0,则 zz 不是 xjxj​ 的有效工具变量。βjβj​ 的估计将会产生未知偏差,这使得回归结果的可靠性受到质疑。正如 Durlauf 等 (2005) 指出的那样:“由于增长理论是相互兼容的,工具变量的有效性需要一个积极的论证,即它不能是直接的增长决定因素,也不能与省略的增长决定因素相关。”

我们可能认为在式 (2) 中包含一些遗漏的 xℓ≠jxℓ=j​ 会有所帮助,但这带来了一个新问题。式 (2) 中包含的每个 xℓ≠jxℓ=j​ 都需要一个额外的工具变量 z~z~。该工具变量必须是有效的 (E[z~ε]=0E[z~ε]=0),并在与其他变量一起使用时保持强度 (即 Corr(z,xj∣z~)≠0Corr(z,xj​∣z~)=0 和 Corr(z~,xℓ≠j∣z)≠0Corr(z~,xℓ=j​∣z)=0)。这是一个很高的标准,且不谈寻找多个有效工具变量的困难,Dollar 和 Kraay (2003) 描述了这样一种情况:两种工具变量单独使用时,每一种看起来都很强,但彼此高度相关,当一起使用时,两者都很弱。

2.1 问题示例——人口规模

人口规模是另一个被广泛使用的工具变量。在这些使用人口规模作为工具变量的研究中,作者们给出了可信的理由,说明人口规模不仅是一个强工具变量,而且跟回归的误差项不相关。然而,当放在一起看时,问题暴露出来了。考虑到这些研究中没有一项把其他研究的内生变量作为自变量之一,假如人口规模在任何一项研究中是一个强且有效的工具变量,那么它在其他所有研究中就不是有效的。

一些研究人员使用人口规模作为贸易的工具变量,研究其对人均收入水平( Frankel 和 Romer 1999;Frankel 和 Rose,2002)或增长(Spolaore 和 Wacziarg,2005)的影响。另外一些研究使用人口规模作为工具变量,以识别外国援助对民主的影响(Hausmann 等,2007)。

如果在其他研究中识别的因果途径是正确的,那么人口规模作为有效工具变量所必需的排除限制就会被违反。人口规模最多只能是其中一项研究的有效工具变量。每个估计的偏差可大可小,但不应该忽视。

2.2 数量多,但无效

许多研究试图通过使用多个工具变量来解决工具变量无效或弱工具变量的问题。然而,人们常常忽视这样一个问题:一揽子工具变量中最有效的工具变量可能是最弱的,而最强的工具变量可能是最不有效的。

Rajan 和 Subramanian (2008) 用增长对外国援助收入进行了横截面回归,用一个由受援国人口规模、援助国人口规模、殖民地关系和语言特征构建的变量作为援助的工具变量。但事实上,该工具变量几乎只包含了受援国人口的规模的信息。在 Rajan 和 Subramanian (2008) 的数据中,1970-2000 年期间,对数人口与所构建的工具变量的样本内相关性为 −0.93。在 1980-2000 年和 1990-2000 年期间,这种相关性为 −0.95。实际上,Rajan 和 Subramanian(2008) 只是将人口作为援助的工具,尽管他们意识到使用人口规模作为工具的问题。

下面用 Rajan 和 Subramanian (2008) 的数据作为例子。以下结果表明,几乎所有的工具变量强度都来自人口变量。第 1 列复制了原文的一个代表性回归。识别不足和弱工具变量的检验表明工具变量很强。第 2 列在第二阶段中包含了对数人口,工具变量强度崩溃。我们不能拒绝结构方程识别不足的原假设。第 3 列仅使用对数人口作为援助的工具变量,结果与第 1 列几乎一模一样。第 4 列把人口规模从原来的工具变量中剔除,再次进行估计,工具变量强度极低。

 阅读全文:论文复现:装模做样的IV (lianxh.cn) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值