- 博客(180)
- 资源 (58)
- 收藏
- 关注
原创 光电探测器性能指标测试
3)将可调光纤衰减器调至合适衰减值,通过频谱仪观察零差检测器的输出信号,可以看到带宽内信号幅度较为平坦,当频率增加超过零差检测器带宽后,信号频谱幅度下降,当下降3dB时,此时对应的频率值为零差检测器的-3dB 带宽。测试环境:可调谐激光器(CW LASER),强度调制器(AM),信号发生器(AWG),可调衰减器(VOA),光纤法兰,光功率计,频谱仪(SA),示波器。5)记录频谱分析仪设置的RBW,将散粒噪声和电噪声曲线对横轴积分,得到噪声的均方根值,画出噪声均方根与输入光功率之间的关系。
2024-05-07 17:31:57
3665
原创 光电探测器怎么选
光电探测器,也称为PD(photodetector)基本原理是,光信号进入光电探测器转换为电压信号,这个电压信号会很弱,微伏或者毫伏级别。所以PD分为带放大和不带放大带放大呢,是因为信号太弱,所以需要把电压信号放大。单位V/W,输出是电压,输入是光功率。小的600V/W,大的上万V/W,和带宽很大关系。国内我知道的,带放大的带宽应该做到5G以内吧,不带放大的带宽可以20G。下面是索雷博的探测器,最基础的光电二极管,也可以称为光电探测器(左下角),输出是电流信号,不能直接用。
2023-09-24 12:29:10
648
原创 微波光子的参数:噪声系数测量
工程师可以测量一定频率范围内的噪声系数,分析仪可以显示系统增益和噪声系数,以帮助测量。从理论上讲,同一台射频设备的测量结果应该是相同的,但由于射频设备的局限性(可用性、精度、频率范围、本底噪声等),我们必须仔细选择最佳的方法才能得到正确的结果。在这种情况下,我们需要测量-150dBm/hz的噪声功率密度,该密度低于大多数频谱分析仪的噪声层。在我们的例子中,系统增益非常高,因此大多数频谱分析仪可以准确地测量噪声系数。这里的理解,频谱分析仪的低噪需要非常的低,假设正常的是-120dBm/hz,增益是20dB,
2023-08-16 19:50:32
1174
原创 三种MMIC放大器偏置电压顺序
11、损坏的部件可能会出现以下一些症状:通过调整栅极电压无法改变的高漏极电流,无漏极电流,低增益或无增益,在MMIC上直流阻塞部分的RF端口上的电压。13、损坏的部件可能会出现以下一些症状:通过调整栅极电压无法改变的高漏极电流,无漏极电流,低增益或无增益,在MMIC上直流阻塞部分的RF端口上的电压。1、有两种HBT放大器,自偏置和带电流控制的自偏置,下图是HBT自偏置放大器最简单的偏置。8、损坏的部件可能有以下一些症状:通过调整栅极电压无法改变的高漏极电流,无漏极电流,低增益或无增益。6、监测集电极电流。
2023-08-16 19:48:52
704
原创 微波光子的参数:动态范围
微波光子链路中的非线性失真主要由电光调制器的非线性调制产生,这些非线性失真可以分为谐波失真和交调失真两类。图1.2(a)给出了光信号在调制器内被一个频率为10 GHz的射频(Radio Frequency,RF)信号调制后的光谱图,可以看到除了会产生RF信号调制的光边带,还会产生二次、三次以及更高次谐波边带。这些光边带在光电探测器拍频后,会还原出 RF 信号、二次谐波失真(Second Harmonic Distortion,SHD)以及更高次谐波失真,如图 1.2(b)所示。
2023-08-05 13:05:45
748
1
原创 Bias Tee理论到实践
Bias Tees是将直流电压施加到必须传递RF/微波信号的任何组件的必不可少的组件,最常见的是需要DC电源的RF放大器。对于窄带应用,bias tee设计和结构是简单的,只需要注意组件的自谐振频率。然而,对于宽带应用,bias tee设计和结构就不容易了,对于成功的高性能设计至关重要。在本文中,我们将研究窄带bias tee设计、组件自谐振频率以及它们如何影响设计,然后将这些思想扩展到宽带bias tee。
2023-08-04 23:28:46
3121
原创 C波段可调谐激光器控制软件系统
iTLA功能关闭调谐,跟踪音调和FM抖动电路。花了两周时间,利用下班时间,设计了一个ITLA可调谐激光器控制系统,从硬件到软件。下面这个图片整套硬件系统,软件硬件都自己设计,可以定制,做到单片机问题也不大。原因可能是,16dBm只是标准值,实际激光器就没达到,本身性质的原因,还可能光纤耦合损耗。3、激光器的输出波长控制,也可以是频率形式,而且步长也可以控制,从1 GHz到50 GHz(对于TTX1995系列激光器,TTX1994系列激光器)。1、模块信息的读取,包括生产日期,生产厂家,型号,序列号等等。
2023-07-16 22:59:15
906
原创 TTX1994-可调谐激光器控制系统
花了两周时间,利用下班时间,设计了一个ITLA可调谐激光器控制系统,从硬件到软件。下面这个图片整套硬件系统,软件硬件都自己设计,可以定制,做到单片机问题也不大。原因可能是,16dBm只是标准值,实际激光器就没达到,本身性质的原因,还可能光纤耦合损耗。3、激光器的输出波长控制,也可以是频率形式,而且步长也可以控制,从1 GHz到50 GHz(对于TTX1995系列激光器,TTX1994系列激光器)。1、模块信息的读取,包括生产日期,生产厂家,型号,序列号等等。4、输出功率可调,步长也可以调谐。
2023-07-16 22:56:11
401
原创 TL5000可调谐激光器控制软件系统
这是最大光功率输出,激光器标准值16dBm,但这只输出15.5dBm。原因可能是,16dBm只是标准值,实际激光器就没达到,本身性质的原因,还可能光纤耦合损耗。3、激光器的输出波长控制,也可以是频率形式,而且步长也可以控制,从1 GHz到50 GHz(对于TTX1995系列激光器)。画了两周时间,利用下班时间,设计了一个ITLA可调谐激光器控制系统,从硬件到软件。1、模块信息的读取,包括生产日期,生产厂家,型号,序列号等等。5、兼容其它的可调谐激光器,例如TL5000,已通过测试。2、激光器输入输出控制。
2023-07-15 15:34:39
636
原创 TTX1995可调谐激光器控制软件系统
这是最大光功率输出,激光器标准值16dBm,但这只输出15.5dBm。原因可能是,16dBm只是标准值,实际激光器就没达到,本身性质的原因,还可能光纤耦合损耗。3、激光器的输出波长控制,也可以是频率形式,而且步长也可以控制,从1 GHz到50 GHz(对于TTX1995系列激光器)。画了两周时间,利用下班时间,设计了一个ITLA可调谐激光器控制软件,从硬件到软件。1、模块信息的读取,包括生产日期,生产厂家,型号,序列号等等。5、兼容其它的可调谐激光器,例如TL5000,已通过测试。2、激光器输入输出控制。
2023-07-15 15:25:49
942
6
原创 复现成功!深度学习口罩目标检测!
深度学习是一种人工智能(AI)方法,用于教计算机以受人脑启发的方式处理数据。深度学习模型可以识别图片、文本、声音和其他数据中的复杂模式,从而生成准确的见解和预测。您可以使用深度学习方法自动执行通常需要人工智能完成的任务,例如描述图像或将声音文件转录为文本。算法使用的是YOLO V7和YOLO V8,算法很牛。PS:本资源为网盘资源,资源包内容会不定期更新。带数据集很好运行,主页有搭建环境过程。内容包括:源码和数据集,部分带文章。目的:用于口罩分类,可以作为学习参考。深度学习-目标分类-口罩。
2023-06-02 22:38:46
180
原创 复现成功!深度学习无人机目标检测!
算法使用的是YOLO V7和YOLO V8,算法很牛。今天找到一份数据集和两份源码,成功复现代码!源码资料这里(网盘形式)
2023-05-30 22:29:55
451
原创 一起运行脑电信号(EEG)源码(2)-deap dataset
该项目使用DEAP数据集,该数据集包含32个志愿者对40个音乐视频的情感评级、生理记录和面部视频。对于单个参与者,数据被细分为标签数组和eeg_data数组。对于标签,应用单独的预处理技术,将其维度降至(32.50)。3.通过两种神经网络架构进行前向传递和反向传递,并使用最终输出进行成本计算。1.提取10个参与者的EEG数据,然后将其转换为特征向用作训练数据。**算法:**valence-arousal模型。**数据集:**deap dataset。**准确率:**80%
2023-03-29 23:01:50
1457
原创 一起运行脑电信号(EEG)源码-ANN
最近对脑计算机接口(BCI)的研究,可以解码大脑EEG信号,有助于有效的机器人控制,这导致了脑机器人接口(BRI)的出现。该项目专注于用户行动/认知想法的准确分类,成功解码脑电信号可以在BRI应用中提供更高的自由度控制。来自用户头皮的EEG信号通过非侵入式电极记录,并预先处理以产生无噪音的EEG信号。在这项工作中,人工神经网络(ANN)机器学习算法被用作分类器来学习脑电信号的特征,以实现有效的输出分类。这项工作对系统的准确性进行了性能分析,建议结合时间-频率分析和ANN算法分别进行脑电图特征提取和分类。
2023-03-29 22:43:13
781
5
原创 锁相环(1)
现在,了解更多细节。它只是比较两个信号级别的参考输入信号和反馈信号,如果两个信号都是高电平1,则每个时间域,相位检测器输出为低电平0,如果仅一个信号高电平1,则相位检测器生成高电平1。因此,锁相环的进一步发展将是开发一种相位检测器,根据反馈信号相位与参考信号相位相比是超前还是滞后,给出不同的结果。在该图中,您可以看到鉴相器根据相位是超前的还是滞后的产生不同极性(不同的符号)的输出信号。顾名思义,如下图所示,PLL是一种具有反馈循环的电路,可将反馈信号的相/频率保持与参考输入信号的相/频率相同(锁定)。
2023-02-18 18:41:46
2839
原创 1dB压缩点和三阶交调点、相位差与延时
当输出功率与理想的线性情况偏离达到1dB时,放大器的增益也下降了1dB,此时的输入信号功率(或幅度)值称为1-dB增益压缩点(1-dB Gain Compression Point)输入两个基频双音信号,即使放大器工作在线性放大区,也会产生三阶交调现象,只要做出输入和输出关系曲线,找到三阶信号和基频信号的1dB压缩点即可,再延长斜率曲线,交点即三阶交调点。可以看到,随着输入功率的增大,输出功率增大得速度变慢,越来越偏离理想的曲线,增益逐步变低,这就是增益压缩效应。一个放大器,增益一定,输入多少放大多少倍。
2023-02-11 16:24:22
6579
原创 低噪声与功放选型购买
低噪放,低噪声射频放大器。作用就是要求噪声系数很低,放大电压信号。一般放在系统第一级,因为噪声系数低,接收放大的信号有很好的的信噪比。如天线的接收,信号的第一级放大放大的级联系统中,第一级的噪声是最重要的。*区分噪声因子F(Noise Factor)和噪声系数NF(Noise Figure)想要有良好的信噪比,需要提高第一级的增益,降低第一级的噪声系数。
2023-02-11 14:27:45
1343
原创 光电探测器怎么选
想要挑选光电探测器,首先应该理解探测器的重要的几个指标。实际看一个光电探测器吧输入输出接口三个部分,光纤输入,射频输出,电源供电数据手册捡几个难理解的说说,详细推导解释这里不赘述了,难理解的就是1、等效噪声功率(Noise Equivalent Power,NEP),代表光电探测器的噪声水平,越小越好。
2023-01-09 21:52:59
2834
原创 光电探测器是什么
光电二极管的电流大小,根据光功率大小决定,然而光也分交流分量和直流分量,所以电流信号也是有直流,有交流,而大部分都是直流分量,交流分量只占了可能百分之几。光电二极管受到光照时候,输出的是微弱电流信号,不能直接被一般放大器,运放或者低噪放放大(电压信号放大器),想要被放大需要经过处理,由电流转换成电压信号,这种电路称为跨阻放大电路或者互阻放大电路,I-V变化电路。光电二极管就是光电二极管。经过电路处理也应该分为两种,一种是只做了电流到电压的转换,另一种除了做了转换,还帮电压信号也放大了,你可以直接使用了。
2023-01-08 23:27:56
1469
原创 差分、差模,共模,单端(1)
就像拿万用表表笔测量输出端某点某时的电压,黑色表笔接地,也是基准,红色表笔点输出端,就能得出一个电压值。一根线在传输信号时候,肯定不能顺顺利利的远距离无损耗的传输吧,来个打雷闪电的,不能波动一下,这不就产生干扰了嘛。一个差分放大器,就是两个输入端,加号是同相输入,负号是反相输入,一个输出,别忘了还有一个地,这个很重要。也可以看出来,差分信号,是一对的,幅度相同,极性相反。用示波器也是一个原理,测量接地夹和表笔,一个接地一个测信号,只不过能把一个时间段的信号给你显示出来。懒得画图了,直接截图,简单写写。
2022-08-23 00:31:04
1991
1
原创 宽带射频放大器OA4SMM4(1)
一款双输入高性能宽带43gb/s电吸收光调制器驱动放大器,抖动极低,振幅为4.5V,具有优异的增益和组延迟平坦度,匹配到45GHz。OA4SMM4具有增益和功率水平,非常适合驱动任一40G电吸收调制器。双驱动器匹配良好,可用于差分调制器或其他复杂的调制方案。OA4SMM4提供了一个小型模块化的封装,具有卓越的性能,用于实验室使用或转发器集成。专为电光测试设备和SONETOC-768/STM-256光调制器驱动应用而设计。它功耗低,驱动信号充足,附加抖动极低,上升/下降时间快,易于使用简单的偏置电压。...
2022-07-29 22:43:15
460
原创 6.30年终小结,学生时代结束
2022年过去了一半,我也已经毕业,即将正式入职。前几天家里老乡高考,问了我一下志愿。回想起我的大学生活,本科到研究生,最大的遗憾,应该两个,第一,没谈过一次恋爱,第二,有一个坏习惯没改掉,应该会毁了我的一生。这是一个很好的时代,相对于父辈他们,有得吃有的穿,有得书读,底层人也有机会向上。但这些机会的概率和环境是有很大关系的,在云南和在广东的概率完全不一样,也不知道什么造成这种局面,先不探讨这个。既然生在云南,就服从现实吧。虽然我的家里,算是寨子偏下层的那种,完全靠家族帮扶,自己也是运气好,稍微努力一点比旁
2022-06-30 21:58:27
568
3
原创 L波段可调激光源-ITLA-3100-L系列
一起看看用剩下的L波段可调激光源-ITLA-3100-L系列相关噪声:-145dB可调光功率范围:5-35mW2秒波长切换时间满足OIF-ITLA-MSA协议ITLA-3100 系列是紧凑型、可广泛调谐的激光器组件,针对线宽和输出功率进行了优化。 它们具有高达 35mW 的发射功率。 NeoPhotonics 相移 DFB 激光芯片和独特的封装技术实现了窄线宽和频率稳定性。 ITLA 组件为 40 和 100 Gb/s 相干应用提供低噪声和窄线宽。ITLA 组件包括集成波长锁定器、行业标准电气和
2022-05-17 13:18:11
1127
原创 bias tee电路设计-电容电感值
分享bias tee电路设计适用于常用的射频放大芯片ERA系列,GALI系列更低频率的值欢迎一起讨论交流bias tee应用电路芯片为GALI3
2022-04-28 21:59:44
2623
原创 【文字情感分类】基于CNN_Pytorch的文字情感分类【含dataset&paper】
CNN-pytorch神经网络的Twitter文字情感分类这个工程使用数据集:the Sentiment-140 Twitter dataset实现了一系列的实验,这些实验使用卷积神经网络(CNN)训练在预先训练的单词向量之上,用于句子级别的分类任务。我们证明了一个简单的CNN具有小的超参数调整和静态向量在多个基准上取得了很好的结果。通过微调学习特定于任务的向量可以进一步提高性能。另外,我们建议对体系结构进行简单的修改,以允许使用特定于任务的向量和静态向量。本文讨论的CNN模型改进了7个任务中的4个,包括
2022-03-30 12:36:30
1561
原创 deap dataset的不同分类模型的实现(3)-遍历文件
学习一下这个里面函数,文件和数据的操作。除了知道输入是什么,还要知道输出是什么,什么类型,能进行什么操作。class Dataset(torch.utils.data.Dataset): def __init__(self, path, stim): _, _, filenames = next(os.walk(path)) filenames = sorted(filenames) all_data = []
2022-03-26 19:40:17
2793
原创 deap dataset的不同分类模型的实现(2)-认识数据
在本系列教程中,我们将使用python mne + pyTorch进行基本的EEG分析。案例研究将在脑电情绪识别的基准数据集DEAP上进行。在第1部分中,我们将重点关注数据集。本教程假设:1、您已经对Python有了基本的了解2、你有一些scikit-learn的经验,也有一些机器学习的知识3、你有一些使用pyTorch的经验,也有一些关于深度学习的知识在这个数据集中,共有32个参与者,每个参与者观看40个1分钟的视频。因此s01.dat持有40批。总样品40*32=1280批。查看每个dat文
2022-03-20 10:46:56
3042
原创 deap dataset的不同分类模型的实现(1)
本教程是基于deap数据集的,涵盖了预测脑电信号的大多数传统机器学习算法和深度学习算法。因为有很多关于DEAP数据集的研究,但它们很难比较。因此,作为一个EEG研究者,几乎不可能知道我应该做出什么样的架构决策。这是由于这样的事实:一些文章要么没有提供代码库因此无法复制,或者没有明确指定使用的hyperparameters,或仅仅由于显而易见的事实,即使是两篇论文使用相同的模型不能直接比较,因为不同的硬件和使用的hyperparameters。我的目的是,我的硕士和博士学生可以使用它作为他们脑电研究的入门
2022-03-19 21:41:46
2899
2
原创 半波电压的研究-马赫曾德尔型
文章主要解释半波电压VπV_{\pi}Vπ是什么?调制信号幅度为什么不能太大?为什么工作点要取π/2\pi/2π/2?都自带输出光功率的公式为Pout =β2Pin [1+cos(πV(s)Vπ+πVbVπ+ϕ)]P_{\text {out }}=\frac{\beta}{2} P_{\text {in }}\left[1+\cos \left(\frac{\pi V(s)}{V_{\pi}}+\frac{\pi V_{\mathrm{b}}}{V_{\pi}}+\p
2022-03-18 16:39:26
6733
2
原创 翻译-光模块通用协议-OIF-ITLA-MSA(1)
光模块通用协议2001年发布了OIF-TL-01.12008年6月发布OIF-ITLA-MSA-01.2将介绍了通信协议、电气接口、电源、光学规范和机械接口,用于在C波段或L波段的设备。三层通信结构应用层传输层物理层通信双方:主机,光模块通信接口:RS232协议主机TX-》RX光模块,假设主机需要发送请求到光模块,首先主机在应用层生成28bit的命令包(4个字节),开始编码,然后在传输层封装成32bit的的命令帧,最后物理层做四位的校验和,再生成40bit的帧传输。注意,每个字节被
2022-02-21 21:43:47
3091
原创 研三工作选择有感
今天早上把一个研究所的工作拒绝了,选择了和老师一起继续做东西。虽说两边目前的待遇都差不多,但心中依然不甘,难免有点可惜,难受,无人诉说。 研究所在昆明待遇算是一流了,但没给事业编,因为学校不是985,211。但是这个工作在外面看来是体面的,稳定的,不错的。 而老师这边呢,待遇和研究所差不了多少,公司不是他的也不大,刚搬过来,也没人,总部在北京。选择这个的原因;1、最重要的是人,老师带了我两年多的老师,努力工作,比学生努力多了,待人真诚,再我看来。他也有想赚钱...
2022-01-07 16:21:48
4332
7
原创 SolidWorks 打开后显示无法获得下列许可SOLIDWORKS Standard。无法连接到服务器。(-15,10,10061)的解决办法
我用的是SolidWorks 2019,。安装文件和破解文件网上很多,羽兔网,软件管家公众号都能下载。安装破解后,可能会与到无法连接到服务器。(-15,10,10061),今天突发奇想,改了一个设置就没啥问题了。过程如下在破解文件中有一个文件夹,文件夹名字可能不同,我的是SolidWorks_Server,但是里面的文件如下,需要整个文件夹复制到C盘,我的路径是C:\SolidWorks_Server如果遇到无法连接到服务器。(-15,10,10061),就管理员身份运行1、把上面.
2021-12-28 21:44:16
37139
10
原创 python helium学习web自动化
from helium import *import timedriver=start_chrome('https://www.baidu.com')write('一拳超人')press(ENTER)time.sleep(2)click("图片")img=driver.find_element_by_name("pn8")click(img)click("下载")首先pip installhelium然后复制ChromeDriver下载链接ChromeDriver - We..
2021-12-15 16:28:00
1678
EEG-运动想象分类-CRNN+LSTM算法-BCI竞赛 IV
2024-05-21
EEG-癫痫分类-CNNL-LSTM以及机器学习SVM随机森林-混合数据集
2024-05-21
EEG-癫痫分类-LSTM-CNN方The Bonn dataset
2024-05-21
带扫描功能的可调谐激光器控制软件
2024-05-15
深度学习领域yolov5算法在小麦头目标检测(带数据集)-13、yolov5-pseudo-labeling
2023-06-18
深度学习领域yolov5算法在小麦头目标检测(带数据集)-12、yolov5-fake-or-real-single-mode
2023-06-18
深度学习领域yolov8算法在小麦头目标检测(带数据集)-11、wheat-detection-using-yolov8
2023-06-18
深度学习领域yolo-v5算法在小麦头目标检测(带数据集)-10、wheat-detection-using-yolo-v5
2023-06-18
深度学习领域faster-rcnn算法在小麦头目标检测(带数据集)-9、train-faster-rcnn-using-ker
2023-06-18
深度学习领域faster-rcnn算法在小麦头目标检测(带数据集)-7、pytorch-starter-fasterrcnn
2023-06-18
深度学习领域faster-rcnn算法在小麦头目标检测(带数据集)-6、object-detection-using-fast
2023-06-18
深度学习领域yolov8算法在小麦头目标检测(带数据集)-5、globalwheet-detection-yolov8
2023-06-18
深度学习领域retinanet算法在小麦头目标检测(带数据集)-4、global-wheat-detection-keras
2023-06-18
深度学习领域faster-rcnn算法在小麦头目标检测(带数据集)-3、fasterrcnn-pseudo-labeling
2023-06-18
深度学习领域detr算法在小麦头目标检测(带数据集)-2、end-to-end-object-detection-with-t
2023-06-18
深度学习领域retinanet算法在小麦头目标检测(带数据集)-1、detection-using-keras-retinan
2023-06-18
深度学习领域yolox算法在深海海星目标检测(带数据集)-11、yolo-x-training-using-icevision
2023-06-18
深度学习领域yolox-inference算法在深海海星目标检测(带数据集)-10、yolox-inference-track
2023-06-18
深度学习领域yolov5算法在深海海星目标检测(带数据集)-8、yolov5-yolox-ensemble-with-trac
2023-06-18
深度学习领域yolov5算法在深海海星目标检测(带数据集)-yolov5-is-all-you-need
2023-06-18
深度学习领域yolov5算法在深海海星目标检测(带数据集)-yolov5-high-resolution-training
2023-06-18
深度学习领域yolov5算法在深海海星目标检测(带数据集)-5、great-barrier-reef-yolov5-train
2023-06-18
深度学习领域yolox-yolov5算法在深海海星目标检测(带数据集)-4、gbr-yolox-yolov5-ensemble
2023-06-18
深度学习领域gan算法在深海海星目标检测(带数据集)-3、gan-training-make-unlimited-cots
2023-06-18
深度学习领域retinanet算法在深海海星目标检测(带数据集)-detection-using-keras-retinane
2023-06-18
深度学习领域yolov5算法在深海海星目标检测(带数据集)-barrier-reef-yolov5-training
2023-06-18
深度学习领域yolov7算法在产品缺陷目标检测(带数据集)-detection-of-product-defects-usin
2023-06-17
深度学习领域2.5d-cnn橄榄球比赛NFL目标检测(带数据集)-training-nfl-2.5d-cnn-lb-0-671
2023-06-17
深度学习领域yolov8橄榄球比赛NFL目标检测(带数据集)-nfl-yolov8-player-position-dete
2023-06-17
深度学习领域yolov8橄榄球比赛NFL目标检测(带数据集)-nfl-yolov8-object-detection-and
2023-06-17
深度学习领域cnn-tta橄榄球比赛NFL目标检测(带数据集)-nfl-using-cnn-tta-player
2023-06-17
深度学习领域yolov7橄榄球比赛NFL目标检测(带数据集)-nfl-players-instance-segmentatio
2023-06-17
深度学习领域xgb橄榄球比赛NFL目标检测(带数据集)-nfl-player-contact-detection-simple
2023-06-17
深度学习领域yolov8橄榄球比赛NFL目标检测(带数据集)-nfl-multipose-estimation-using-y
2023-06-17
深度学习领域CNN橄榄球比赛NFL目标检测(带数据集)-nfl-2.5d-cnn-baseline-inference
2023-06-17
深度学习领域CNN橄榄球比赛NFL目标检测(带数据集)-cnn-baseline-more-tta-trick
2023-06-17
深度学习领域YOLOV7人和车目标检测(带数据集)-Training Yolov7 on Custom Dataset
2023-06-17
深度学习领域YOLOV7足球比赛视频目标检测(带数据集)-yolov7-explanation-and-implementa
2023-06-17
深度学习领域YOLOV5足球比赛视频目标检测(带数据集)-bundesliga-yolov5-specialized-for
2023-06-17
深度学习领域YOLOV8足球比赛视频目标检测(带数据集)-3、bundesliga-pretrained-yolov8-bal
2023-06-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人