温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。
作者:颜国强 (东南大学)
邮箱:yangq0827@163.com
编者按:本文整理自下文,特此致谢!
Source:Clarke, D., Llorca Jaña, M., & Pailañir, D. (2023). The use of quantile methods in economic history. Historical Methods: A Journal of Quantitative and Interdisciplinary History, 56(2), 115–132. -Link- -PDF- -Google-
- Title:论文推介:分位数回归在经济史研究中的应用
- Keywords:经济史,线性分位数回归,分位数处理效应
1. 引言
在经济史研究中,捕捉变量之间的相关关系通常需要测量变量的整个分布。例如,在人口统计学中,儿童时期的发育迟缓和发育不良与成年后的健康状况差、劳动市场收入低以及晚年的认知能力差有关 (Jayachandran and Pande, 2017; Fogel, 2004; Floud et al., 2011)。虽然身高与健康及其他福祉指标有广泛的相关性,但这些关系并不是在整个身高范围内都是一致的,而且在不同群体中也会有所不同。因此,评估历史事件对身高或其他人口统计学指标的影响,需要了解该事件对因变量整个分布的影响。
同样,有学者研究了财富的分布 (Latzko, 2020; Canbakal and Filiztekin, 2021),发现财富的平均值变化背后可能隐藏着截然不同的财富分配模式,比如财富底端和顶端的变化。正因如此,除了平均值外,政策或事件的分布效应可能和平均效应同样重要,甚至更重要。
分位数回归由 Koenker and Bassett (1978) 首次提出,此后在许多研究中得到了广泛讨论和应用。尽管这篇开创性的论文已经发表四十多年,但分位数回归仍然是一个活跃的研究领域。然而,本文聚焦于探讨历史事件对分布的影响,重点分析分位数回归及其相关方法的计量建模和估计,而并未涉及非参数分析或经济史研究中的描述性方法 (Deaton, 1989; Wachter, 1981)。
尽管分位数回归非常适用于经济史研究,因为感兴趣的因变量通常是连续分布的,但在经济史文献中,分位数回归的应用相对较少。本文不仅概述了这些方法及其最新扩展,还讨论了其在经济史中的优缺点。通过对主流经济史期刊的分析,我们发现大约有 50 篇论文使用了分位数回归。本文审视了这些论文中采用分位数方法的理由,主要归结为以下三点:
- 在特定情境下,分位数方法能提供更深入的理解;
- 在某些情况下,分位数方法与特定的计量模型更加契合;
- 分位数方法能解决其他模型设定中出现的某些特定问题。
然而,在经济史研究中,如果面临测量误差和数据收集的难题,分位数方法可能并不适用。此外,分位数方法依赖于连续性测量结果,并且只有在数据规模较大时才能发挥其优势。因此,在数据收集困难且成本高昂的研究领域,这些限制可能会制约分位数回归的实际应用。
本文旨在通过以下两种方式,提升学者们在经济史研究中使用分位数方法的兴趣:
- 阐释实证研究者如何有效利用这些方法,以揭示那些简单平均值或其他平均值估计量无法捕捉到的相关关系;
- 记录这些方法在经济史文献中的使用情况,并指出在某些研究中,分位数回归方法可能未得到充分应用的方面。
温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。