顶刊编辑的投稿建议:定量研究要注意什么?

温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。

作者:郑宇、徐文曦 (汕头大学)
邮箱cn_vip@outlook.com

编者按:本文主要摘译自下文,特此致谢!
Source:Mustillo, S. A., Lizardo, O. A., & McVeigh, R. M. (2018). Editors' Comment: A Few Guidelines for Quantitative Submissions. American Sociological Review, 83(6), 1281-1283. -Link- -PDF-

  • Title:顶刊编辑的投稿建议:定量研究要注意什么?
  • Keywords:定量研究,p值,中介效应,分类因变量,Multiple regression,Multivariate model

资深学者 Sarah MustilloOmar Lizardo 和 Rory McVeigh 关注到网络爬虫和文本分析等前沿技术的发展。在担任《美国社会学评论》(ASR) 编辑的三年中,他们处理了数千篇稿件,并对其中反复出现的一系列问题进行了总结。这些问题并非严格意义上的错误,而是反映了社会学定量研究者之间先前接受的做法与定量方法学家中最新技术共识之间的差距或滞后。

1. p 值

关于 pp 值效用的讨论在文献中比比皆是。一方面,那些关心可复制性和新发现标准的人认为,统计显著性的阈值应该降低到 0.05 以下 (Benjamin 等,2018)。另一方面,一些人认为我们应该完全摒弃 pp 值和零假设显著性检验 (McShane 等,2017)。

在这场辩论中,我们不打算表明立场,只是总体上认为,pp 值小于 0.10 和单尾检验应该只在极少数特殊情况下,并且有恰当的理由时才使用。许多论文试图通过指出其口头提出的假设中的“方向性”来为使用 pp 值小于 0.10 的标准辩护。其他人则使用含糊的语言,将 pp 值小于 0.10 的结果描述为“边缘性”或“提示性”发现。我们并不认为第一个理由有说服力。就第二种做法而言,ASR 是我们学科的顶级期刊,我们需要发表的是强有力的证据,而不是“提示性”的发现

2. 中介效应检验

我们接收到许多投稿,试图通过简化版的 Baron 和 Kenny (1986) 步骤来检验中介效应。作者通常采取以下步骤:首先,建立一个包含自变量和控制变量的模型;接着,再建立一个加入中介变量的模型。如果自变量的系数减小或变得不显著,作者便得出结论,认为主要效应已被中介变量所中介。

这种方法存在几个问题。最常见的问题是,作者未能对系数大小的差异进行显著性检验。这个步骤对于判断是否发生了中介效应是必要的。自变量的系数可能会减小,甚至变得不显著,但仍可能处于仅由随机因素引起的波动范围内。正如 Gelman 和 Stern (2006) 所指出的,统计显著性的变化本身可能并不具备显著性。

有时,作者可能会像 Sobel (1986) 检验一样进行显著性检验,以判断系数变化是否具有统计显著性,这无疑是一个正确的方向。近年来,不少学者开发了改进 Sobel 检验的新方法,这些方法可以在不同的软件包中实现,并且能在一定程度上提高检验效果。其中一些方法解决了我们将要提到的下一个问题,即在非线性模型(如 logit 和 probit 模型)中,无法仅通过观察模型间系数大小的变化来判断中介效应。

有关更详细的信息,可以参考 MacKinnon (2008),Imai 等 (2010),Karlson 等 (2012) 以及 Vanderweele (2015,2016) 的研究。我们建议,未来计划在 ASR 期刊上发表文章的作者,针对中介效应的检验应采用更为复杂和精确的方法

3. 分类因变量模型中的交互作用

在非线性模型中使用交乘项系数的 zz 统计量 (及相关的 pp 值) 来检验统计交互作用,已经引发了各种问题。Allison (1999),Williams (2009) 等学者集中讨论了其中一种类型的问题 (例如,组间残差方差的异质性),而 Mood (2010),Breen 和 Karlson (2013),Long 和 Mustillo 等则关注了一系列其他问题。问题已经明确:不要使用交互作用项的系数来推断分类模型 (如 logit、probit、Poisson 等) 中的统计交互作用。每位学者都推荐了不同的检验交互作用的方法。我们建议未来的作者根据具体的应用情境,选择合适的检验方法。

温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值