
2021 论文
文章平均质量分 80
本人深圳大学在读博士
研究大模型,数据交易,联邦学习领域
每天帮助你们总结前言论文以及领域相关问题解决办法。
任何问题私信均回复。
介绍各种论文编辑工具,方便硕士生或者博士生的你快速发文章。
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
ZhangJiQun&MXP
本人在读博士,研究大模型,数据交易,联邦学习领域
每天帮助你们总结前言论文以及个人遇到问题。
投稿Expert Systems with Applications历时4个月;中科院1区顶刊,本人在科研一线,在文章架构设计,公式编辑,图片美化,语言润色。overleaf编辑方面有一定经验,直接订阅后私信本人可以协助完成投稿返修。https://blog.csdn.net/qq_38998213/article/details/146232131?sharetype=blogdetail&sharerId=146232131&sharerefer=PC&sharesource=qq_3899821
展开
-
Telegram是什么? 有什么优势
Telegram不仅是个人通讯工具,还能满足企业协作、内容创作和社群运营等多元需求。其安全性、扩展性和用户友好设计,使其成为全球超10亿用户的首选通讯平台。原创 2025-04-07 19:47:22 · 353 阅读 · 0 评论 -
Twitter和Telegram的区别
Twitter**:是一个微博客和社交网络服务平台 ,侧重于公共信息传播、话题讨论和社交互动,更像是一个公开的广场,用户可以在这里快速获取和分享各类资讯,关注感兴趣的人、话题或事件。- **Telegram**:属于即时通讯应用 ,虽也具备一定社交属性,但更强调私密、安全的通讯体验,以及为特定群体(如兴趣小组、企业内部等)提供高效的信息交流渠道,类似私人聚会场所或专属交流圈子。原创 2025-04-07 13:22:27 · 94 阅读 · 0 评论 -
大型语言模型的智能本质是什么
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统 ,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造原创 2025-04-03 16:53:54 · 221 阅读 · 0 评论 -
Tracing the thoughts of a large language model 简单理解
论文通过类比生物学研究(如显微镜对细胞的发现),提出归因图作为解析语言模型“神经电路”的工具。Claude 3.5 Haiku的内部机制显示,模型不仅依赖表层模式匹配,还具备多层次推理、规划和抽象能力。这些发现为理解大型语言模型的智能本质提供了关键洞见,同时为开发更可靠、可控的AI系统奠定了基础。原创 2025-04-03 16:47:33 · 204 阅读 · 0 评论 -
大型语言模型的智能本质是什么:高效的模式生成与匹配,而非真正的理解或创造力
大型语言模型的智能本质是什么:高效的模式生成与匹配,而非真正的理解或创造力原创 2025-04-03 16:47:01 · 36 阅读 · 0 评论 -
追踪大型语言模型的思维过程:提示词工程重要
追踪大型语言模型的思维过程:提示词工程重要**1. 分步思考能力:像人类一样打草稿****2. 跨语言概念词典:突破语言符号的束缚****3. 诗歌押韵规划:神经元提前预留韵脚****4. 编造专业解释:数据模式导致的“客服式回应”****5. 神经元电路追踪:定位负责进位计算的“算术区”****6. 显性vs隐性思考:表面分步推导,内部并行计算****7. 语言无关性:概念理解超越语言符号****8. 双线程处理:直觉估算+精确计算****总结:AI思维的“类人化”与本质差异**原创 2025-04-03 16:28:44 · 197 阅读 · 0 评论 -
A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis
论文为心理健康领域LLM的选择提供了实证依据,强调需权衡准确性、计算成本和部署灵活性。例如,若需高精度且资源充足,选择微调;若需快速响应,零样本提示是更优解。原创 2025-04-03 11:56:26 · 30 阅读 · 0 评论 -
聊天助手代码解释: ROBOT_WX_NAME != ‘‘ and (bool(re.search(f‘@{ROBOT_WX_NAME}\u2005‘;聊天助手代码解释:if content
聊天助手代码解释: ROBOT_WX_NAME != '' and (bool(re.search(f'@{ROBOT_WX_NAME}\u2005'整体功能概述代码逐行解释聊天助手代码解释:if content整体功能概述代码逐行解释总结原创 2025-04-02 17:38:10 · 23 阅读 · 0 评论 -
python 项目怎么通过docker打包
如果你需要将镜像传输到其他机器,可以把镜像保存为一个文件,然后在目标机器上加载它。按照上述步骤,你就能把Python项目通过Docker打包并在其他机器上运行。此文件用于列出项目的所有依赖项。在项目根目录下创建一个。表示将容器的8000端口映射到主机的8000端口。在Python项目的根目录下创建一个名为。是你给镜像起的名字,可按需修改。原创 2025-04-02 17:10:38 · 159 阅读 · 0 评论 -
windows10 家庭版怎么进行rdp,连接远程桌面
企业用户:优先选择升级至专业版,确保合规与稳定性。个人用户短期需求:使用远程协助或第三方工具(如向日葵)。长期需求:通过 RDPWrap 或购买专业版许可证。跨网络访问:结合内网穿透与动态域名解析,或使用第三方工具的穿透功能(如向日葵的“访问者模式”)。安全提示:无论选择哪种方案,均需定期更新系统补丁、启用防火墙,并避免在公共网络直接暴露 RDP 端口。原创 2025-04-01 19:50:14 · 616 阅读 · 0 评论 -
Xvfb和VNC Server是什么
Xvfb(X Virtual Framebuffer)是一个虚拟的 X 服务器,用于在没有物理显示设备(如显示器)的环境中运行图形界面应用程序。它创建一个虚拟的帧缓冲区,使图形程序能在无实际屏幕输出的情况下运行,常用于服务器环境或无需图形用户界面的系统,为图形应用提供运行所需的显示环境,避免因缺少物理显示设备而导致程序无法启动或运行异常。原创 2025-03-31 22:42:54 · 215 阅读 · 0 评论 -
wx = WeChat(); wx.A_MyIcon.Name; wx.AddListenChat(who=user_name, savepic=True)
user_names`是一个包含需要监听的微信用户昵称(或群聊名称)的列表。- `wx.AddListenChat`是`WeChat`类的一个方法,用于添加需要监听的聊天对象。 - `who=user_name`指定了要监听的具体对象,即`user_names`列表中的每个用户或群聊。 - `savepic=True`表示在监听过程中,如果收到的消息包含图片,会将图片保存下来。原创 2025-03-31 10:53:13 · 117 阅读 · 0 评论 -
Excel 使用技巧:excel 合并不同列内容; excel 将公式转化为文本
xcel 使用技巧excel 合并不同列内容="A:"&C1&"、B:"&D1&"、C:"&E1&"、D:"&F1excel 将公式转化为文本右键选择行粘贴某一列均填入“提示词”单击拖动双击某一列均填入“1”清除14044以后的1原创 2025-03-30 17:40:19 · 299 阅读 · 0 评论 -
MMLU数据集简介
MMLU(Massive Multitask Language Understanding)是由OpenAI开发的多任务语言理解基准数据集,旨在评估语言模型在跨领域知识推理和复杂任务中的综合能力。其核心设计理念是通过覆盖多学科、多层次的问题,模拟人类在教育、职业等场景中的知识应用,从而衡量模型的通用性和深度理解能力。MMLU作为当前最权威的多任务语言理解基准之一,其价值不仅在于提供标准化的评估工具,更在于推动模型向“通用知识推理”方向发展。原创 2025-03-30 15:51:07 · 266 阅读 · 0 评论 -
豆包(Doubao)和通义千问(Qwen)特殊标记设计与模型架构
豆包(Doubao)和通义千问(Qwen)特殊标记设计与模型架构**一、豆包(Doubao)的特殊标记**1. **多模态标记**2. **任务特定标记**3. **对话标记**4. **知识增强标记****二、通义千问(Qwen)的特殊标记**1. **代码生成标记**2. **多模态标记**3. **长上下文标记**4. **对话标记**原创 2025-03-30 13:12:23 · 220 阅读 · 0 评论 -
Transformer预训练模型(如BERT、GPT)的特殊标记
Transformer预训练模型(如BERT、GPT)的特殊标记**一、基础通用标记**1. **分类标记:`[CLS]`/`<s>`**2. **分隔标记:`[SEP]`/`</s>`**3. **掩码标记:`[MASK]`**4. **填充标记:`[PAD]`**5. **未知标记:`[UNK]`**原创 2025-03-30 13:09:58 · 275 阅读 · 0 评论 -
提示词优化方式 结合 Transformer架构或
提示词优化方式 结合 Transformer架构或1. **位置编码提示**2. **掩码提示(Masked Prompt)**3. **多模态提示**4. **任务特定提示词**5. **动态提示生成**6. **注意力引导提示**7. **分块提示(Chunked Prompt)**总结利用位置编码特性适配多头注意力机制结合预训练权重的知识领域触发权重中的模式匹配控制权重更新方向(针对微调场景)原创 2025-03-30 13:06:01 · 50 阅读 · 0 评论 -
怎样提升大语言模型(LLM)回答准确率
怎样提升大语言模型(LLM)回答准确率激励与规范类知识关联类情感与语境类逆向思维类:为什么不,反面案例群体智慧类明确指令类示例引导类思维引导类约束限制类反馈交互类:对话原创 2025-03-30 12:57:41 · 245 阅读 · 0 评论 -
大语言模型 精心设计提示(Prompt) 提升模型性能:ICL
引导模型更好地理解任务要求,从而在不同任务上实现更优的性能。它允许开发者利用模型的通用能力,通过设计合适的提示来完成特定任务。通过详细的指令、示例和上下文信息。原创 2025-03-30 12:27:47 · 39 阅读 · 0 评论 -
docker pull lss233/one-api:latest 在哪里运行,作用是什么
镜像用途**:此镜像封装了 [One-API](https://one-api.vercel.app/) 服务,支持通过统一接口调用ChatGPT、Claude、DeepSeek等模型,简化多模型API管理原创 2025-03-29 17:15:23 · 168 阅读 · 0 评论 -
Dify 是什么和扣子差不多?
Dify 和扣子 AI(Coze)虽有部分相似的可视化、大模型对接等特性,但在功能深度、适用场景和用户定位上差异明显。若追求简单快速搭建基础 AI 应用,扣子 AI 更易上手;若需开发复杂、功能强大且部署灵活的 AI 应用,Dify 更具优势。原创 2025-03-29 01:00:49 · 68 阅读 · 0 评论 -
docker - compose up - d`命令解释,重复运行会覆盖原有容器吗
重复使用时,会根据服务配置和镜像状态智能处理,确保最终运行的容器符合。的定义,并非简单的“覆盖”,而是更灵活的更新或启动操作。原创 2025-03-28 21:03:00 · 311 阅读 · 0 评论 -
Docker Desktop 界面功能介绍
Containers(容器)用于管理容器,包括查看运行中或已停止的容器,检查容器状态、日志,执行容器内命令,启动、停止、删除容器等操作。Images(镜像)管理本地 Docker 镜像,可查看镜像列表、从 Docker Hub 拉取新镜像、删除镜像,或基于镜像创建容器。Volumes(卷)管理数据卷,实现容器数据的持久化存储,方便在容器删除后仍保留数据,或在多个容器间共享数据。Builds(构建)通过 Dockerfile 构建自定义镜像,查看构建历史和日志,管理构建上下文等。原创 2025-03-28 20:43:48 · 270 阅读 · 0 评论 -
WSL 2是什么: Docker Desktop 默认依赖 WSL 2
Docker Desktop for Windows 自 2020 年起默认使用 WSL 2 作为后端,利用其内核级虚拟化技术实现更高效的容器管理。若需验证 WSL 2 是否与 Docker 正确集成,可通过。通过 WSL 2,Windows 用户可兼得 Linux 的灵活性和 Windows 的生态优势,是开发、运维和跨平台协作的重要工具。它通过内核级虚拟化技术实现了更高效的 Linux 环境支持,是 WSL 1 的升级版。是微软开发的一套技术,允许在 Windows 10/11 操作系统上直接运行。原创 2025-03-28 20:23:54 · 331 阅读 · 0 评论 -
Agent AI综述
知识和逻辑推理智能体包含知识、逻辑、情感推理和神经符号等类型,用于处理知识和推理任务;:提出新的训练范式,利用预训练模型理解文本和视觉输入,支持长期任务规划和记忆编码,还能根据环境反馈训练智能体。比如可以用LLMs和VLMs初始化智能体组件,也可以使用统一的Agent Transformer模型,它在定制任务、理解模型行为和满足数据隐私要求等方面有优势。同时,提出了用于多智能体游戏和视觉语言任务的基准测试和新数据集,如“CuisineWorld”和“VideoAnalytica”,推动该领域的研究发展。原创 2025-03-28 18:29:06 · 76 阅读 · 0 评论 -
多智能体功能分化的核心优势是什么:提升效率,查漏补缺
功能分化通过专业化、模块化和动态协作,使多智能体系统在效率、鲁棒性和适应性上显著优于单体智能体,尤其适用于复杂、动态的现实场景。:单一智能体无需处理全流程,通过专业化分工减少冗余计算和决策延迟。在于通过分工协作提升整体效率、灵活性和鲁棒性。:通过增减智能体或调整分工应对环境动态变化。:模块化设计使功能迭代和错误修复更简单。:独立模块可快速测试新算法或策略。原创 2025-03-28 18:21:23 · 79 阅读 · 0 评论 -
怎么实现 DSL(领域特定语言)与神经符号(Neuro-Symbolic)结合
通过DSL与神经符号的结合,研究可在复杂推理、少样本学习、可解释性AI等方向取得突破,尤其适用于医疗、金融、法律等对准确性和透明性要求高的领域。-如何高效地将连续的神经特征映射到离散的DSL符号(如代码生成中的语法错误)。-生成高质量的DSL标注数据(如自然语言→DSL对)需领域专家参与,成本较高。-结合监督学习(DSL标注数据)与无监督学习(利用预训练模型的通用知识)。-DSL需覆盖任务所需的全部逻辑(如递归、条件嵌套),同时保持语法简洁。-针对具体任务简化DSL语法(如仅包含任务所需的核心操作符)。原创 2025-03-28 17:08:38 · 89 阅读 · 0 评论 -
SFT(监督微调)与 RLHF的本质区别
以下是 SFT(监督微调)与 RLHF(基于人类反馈的强化学习)的本质区别及代码 先试用SFT强制,在使用RLHF符合人类原创 2025-03-28 12:57:20 · 43 阅读 · 0 评论 -
SFT与 RLHF 仅仅是一个用标签数据一个用人类评价吗?
SFT和RLHF的核心区别在于 **“是否强制匹配标签”** 和 **“如何利用人类反馈”**。SFT是基础能力的“校准”,RLHF是高阶偏好的“调校”,两者结合才能让模型既“正确”又“合意”。原创 2025-03-28 12:46:19 · 30 阅读 · 0 评论 -
DQN与PPO在算法层面的核心区别
DQN案例:在围棋AI中,DQN可用于评估棋盘状态的落子价值(如“落子此处的Q值”),但需结合蒙特卡洛搜索树(如AlphaGo)。PPO案例:在波士顿动力机器人的后空翻动作中,PPO通过策略梯度优化,学习电机扭矩的连续控制策略,使机器人完成复杂动作。原创 2025-03-28 12:42:44 · 96 阅读 · 0 评论 -
什么是 MoE、Long Context、RAG、Agent、O1
1. MoE(混合专家模型,Mixture of Experts)定义:一种将多个专用子模型(“专家”)组合成一个系统的架构,每个专家负责处理特定类型的输入或任务,通过门控机制动态选择最相关的专家进行计算。示例:在 Transformer 架构中引入 MoE,每个层包含多个专家模块,输入数据通过路由机制分配给最合适的专家处理,显著提升模型效率和能力。:基于 MoE 的万亿参数模型,通过专家分工处理不同语言任务(如翻译、问答),在保持高性能的同时降低计算成本。原创 2025-03-28 11:33:34 · 62 阅读 · 0 评论 -
什么是 强化学习(RL):以DQN、PPO等经典模型
DQN(深度 Q 网络)和 PPO(近端策略优化)共同属于强化学习(Reinforcement Learning,RL)这一领域。强化学习是机器学习中的一个重要分支,其核心在于智能体(Agent)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略,以最大化长期累积奖励在 DQN(深度 Q 网络)里,Q 代表的是**动作价值函数(Action - Value Function)**,其主要功能是衡量在**给定状态下采取特定动作,所能获取的长期累积奖励的期望值**。简单来说,它的作用就是判断 “原创 2025-03-28 11:30:06 · 148 阅读 · 0 评论 -
什么是 继续预训练、SFT(监督微调)和RLHF
典型流程**: 通用预训练模型 → 继续预训练 → SFT → RLHF → 部署应用。例如,GPT-4的训练流程大致为: - 先在海量文本数据中预训练基础模型; - 继续用多模态数据增强训练; - 通过SFT适应对话任务; - 最终通过RLHF优化回答质量和安全性。原创 2025-03-28 10:59:44 · 218 阅读 · 0 评论 -
overleaf 怎么减小算法之间的行间距
overleaf 怎么减小算法之间的行间距原创 2025-03-27 17:28:30 · 99 阅读 · 0 评论 -
overleaf怎么缩小伪代码字体
常用字体大小命令: - `\small`:小五号字(较常用); - `\footnotesize`:六号字; - `\tiny`:极小字号。根据需求选择对应命令即可调整伪代码字体大小。原创 2025-03-27 16:34:43 · 53 阅读 · 0 评论 -
Overleaf怎么实现强制换行
换行时,行尾不能有空格或其他字符,否则可能产生意外空格或错误。原创 2025-03-27 16:33:28 · 124 阅读 · 0 评论 -
overleaf 怎么实现无序列表
overleaf 怎么实现无序列表 以下是将 `enumerate` 列表换成其他常见列表形式的实现方法:原创 2025-03-27 15:28:11 · 65 阅读 · 0 评论 -
Overleaf中使用IEEE模板处理三级标题是什么
IEEE模板对标题层级和格式有严格要求,过多层级可能不符合期刊规范,建议优先精简内容结构。若涉及中文标题,需选择XeLaTeX编译器并添加。IEEEtran.cls默认支持到二级标题(在Overleaf项目设置中选择。编译器,确保支持中文和复杂格式。若仍无法显示,可尝试添加。原创 2025-03-27 15:26:45 · 101 阅读 · 0 评论 -
爱思唯尔校稿流程,有什么注意事项
爱思唯尔校稿流程,有什么注意事项绿点红点是什么意思Hightlight 85 字符是什么意思BibTeX是什么格式所有图表都需要进行引用修正完先save 在submit原创 2025-03-27 00:31:54 · 202 阅读 · 0 评论 -
LLM动态Shape实现原理与核心技术
LLM动态Shape实现原理与核心技术1. **动态Shape核心原理**2. **实现方法与关键技术**3. **示例:vLLM处理动态长度输入**4. **动态Shape vs 静态Shape对比**5. **性能优化案例**总结`SamplingParams` 是什么常见参数及作用使用示例原创 2025-03-26 21:52:53 · 99 阅读 · 0 评论