特征描述子
ARLoverKang
这个作者很懒,什么都没留下…
展开
-
比较描述子
局部特征描述子可以分为两类,(个人看法,欢迎批评):一是基于“绝对”值的,二是基于比较的。基于绝对值的是指诸如Sift,Surf,GLOH之类的描述子。一般的思路是将灰度,梯度等量化,构造直方图。这类描述子的判别性高,直观,但是有个通病就是计算复杂度高。基于比较的是指诸如Ferns,BRIEF,Orb,OSID,BRISK之类的描述子。一般的思路是通过比较预先训练的,或者随机点对的转载 2013-07-02 18:52:50 · 1671 阅读 · 0 评论 -
BRIEF特征
BRIEF特征的论文是"BRIEF: Binary Robust Independent Elementary Features",eccv2010。它出乎出乎意料的简单,真的是非常简单,令人感觉到这么简单的方式,是真的有效吗?1. 给定一副图2. 对图像做平滑处理。平滑处理,也就是高斯滤波,也就是blur operation,降低图像噪声。平滑处理在BRIEF中很转载 2013-07-02 20:22:29 · 1167 阅读 · 0 评论 -
利用特征点(Brief,ORB,SIFT)进行图像匹配,模板匹配
头文件在VS2010+OpenCV2.3.1 #include "StdAfx.h"#include "opencv2/core/core.hpp"#include "opencv2/calib3d/calib3d.hpp"#include "opencv2/features2d/features2d.hpp"#include "opencv2/imgproc/imgproc.hp转载 2013-07-02 20:53:57 · 3206 阅读 · 0 评论 -
a summary of local feature and decriptor
vision:主要研究这个方面,就讲一讲这方面的研究脉络吧:局部特征提取应该起源于运动分析的跟踪算法,Hannah和Movarac提出了关于角点的最原始的算法。Forstner和Gulch, Harris和Stephens把这个原始想法形式化为结构张量(或称二阶矩矩阵)的两个特征值的性质问题,在此基础之上,Noble,Rohr,Tomasi和 Kanade,Shi和Kanada等提出了各种转载 2013-07-02 20:29:33 · 847 阅读 · 0 评论 -
ORB算法分析(草稿)
ORB算法的论文来自"ORB: an efficient alternative to SIFT or SURF",作者是OpenCV维护和开发的公司willowgarage的,论文名字起的很牛气,摘要里说,ORB算法比sift算法效率高两个数量级。江湖上流传的说法是ORB算法综合性能在各种测评里是最好的。ORB算法是在FAST关键点检测+BRIEF特征上做的。转载 2013-07-02 21:12:02 · 1274 阅读 · 0 评论