自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

转载 大牛博客

昨晚和几个老同学小聚,聊得很开心。忘了到哪儿聊起一些牛人的博客,走得时候华仔还一直说要我一定记得把博客链接email给他。索性写个资源帖,记录一些我经常浏览的博客,并在此向所有提供,分享优秀资源的博主们致敬!也期待大家能留言推荐其他优秀的博客~大牛:刘未鹏  http://mindhacks.cn/  绝对的绝对的大牛,在大一时读到他的《我在南大的七年》,从此成了我和我身边

2016-01-04 20:21:22 735

转载 woe和iv的含义

信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型。       本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户;则WOE(weight of Evidenc

2015-12-15 14:49:04 7829

转载 机器学习开源库

研究数据挖掘和机器学习有一段时间了,对数据挖掘来说,商用软件有SAS、 Clementine、Oracle数据挖掘组件等等;由于个人学习和版权、算法定制等问题,开源的数据挖掘与机器学习软件(库)目前也十分必需,现在就跟大家介绍下比较流行和常用的机器学习开源库。  以前在学校用过matlab,说实话真方便,通常一个模型只要几十行甚至十几行代码就能搞定,但是正版matlab较贵,而且不太适合商

2014-05-03 23:22:38 827

转载 OpenCV学习笔记(四十五)——小试随机森林(random forest)算法ml

对于随机森林算法,原理我想大家都会去看论文,推荐两个老外的网址http://www.stat.berkeley.edu/users/breiman/RandomForests/和https://cwiki.apache.org/MAHOUT/random-forests.html,第一个网址是提出随机森林方法大牛写的,很全面具体,第二个是我自己找的一个,算是一个简化版的介绍吧。说白了,随机森林分类

2014-04-05 22:32:45 2478

转载 Mahout推荐算法API详解

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。从2

2014-04-01 18:05:37 665

转载 数据挖掘中所需的概率论与数理统计知识、上

导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简史,因为,只有了解各个定理.公式的发明历史,演进历程.相关联系,才能更好的理解你眼前所见到的知识,才能更好的运用之。微积分、概率分布、期望、方差、

2014-03-21 21:54:07 1460

转载 从B树、B+树、B*树谈到R 树

从B 树、B+ 树、B* 树谈到R 树 作者:July、weedge、Frankie。编程艺术室出品。说明:本文从B树开始谈起,然后论述B+树、B*树,最后谈到R 树。其中B树、B+树及B*树部分由weedge完成,R 树部分由Frankie完成,全文最终由July统稿修订完成。出处:http://blog.csdn.net/v_JULY_v 。 第一节、B树、B+树、B*

2014-03-21 17:02:15 522

转载 Stanford机器学习---第十讲. 数据降维

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中

2014-03-20 14:06:19 712

转载 Stanford机器学习---第九讲. 聚类

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中

2014-03-20 14:04:35 616

转载 Stanford机器学习---第八讲. 支持向量机SVM

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 14:02:16 942

转载 Stanford机器学习---第七讲. 机器学习系统设计

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 14:00:36 614

转载 Stanford机器学习---第六讲. 怎样选择机器学习方法、系统

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 13:59:05 585

转载 Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 13:54:20 1003

转载 Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 13:51:41 1242

转载 Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 13:49:46 895

转载 Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2014-03-20 13:47:58 858

转载 Stanford机器学习---第一讲. Linear Regression with one variable

原文地址:http://blog.csdn.net/abcjennifer/article/details/7691571本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支

2014-03-20 13:45:41 947

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除