数据仓库概念扫盲,kimball和Inmon两大派系在争什么?

本文介绍了数据仓库的基本概念,包括数据仓库、企业数据仓库、维度和度量等,并对比了kimball和Inmon两大派系的数据仓库架构。kimball主张自下而上,数据集市集合,适合业务频繁变化;Inmon则强调自上而下,规范化设计,适合大型企业。两者在实施速度、数据管理及开发人员要求上各有特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文,是为了让大家更好的理解大数据经典架构的补充内容,主要介绍一下数据仓库相关的内容。

数据仓库(Data Warehouse,DW):由两个主要部分构成(一个整合的决策支持数据库 + 一个收集、清洗、转换、存储来自于各种外部数据源数据的相关软件程序),两者结合以支持历史的、分析的和商务智能需求

企业数据仓库(Enterprise Data Warehouse,EDW):是服务于整个企业商务智能需要的集中式数据仓库。企业数据仓库遵循企业数据模型,使得整个企业范围内的决策支持活动可以保持一致。

一个数据仓库也可能包括若干相关的数据集市,他们都是数据仓库的子集副本

数据仓库活动专注于实现一个历史的业务上下文,包括业务规则,同时保证与元数据存储库交互的流程。

数据仓库活动提供技术解决方案以支持商务智能(BI),“商务智能”是多种业务能力的集合,具体包括:

  • 知识工作者执行查询、分析和报表活动,用于监控和了解企业财务运营情况,支持决策制定

  • 基于企业操作型数据的战略/运营分析和报表,从而支持业务决策、风险管理、合规管理

  • 查询/分析和报表相关的流程和规程

  • 商务智能软件工具的细分市场、决策支持系统的同义词、商务智能环境的代名词

 

数据仓库和商务智能管理的目标:

软件

环境

为数据获取、数据管理和数据访问提供稳定、高效、可靠的环境。

提供易于使用的、灵活的和全面的数据访问环境。

定义、构建并维护所有数据存储、数据处理过程,数据基础设施和数据工具,在系统输出后经过整合和精细化处理的数据可以用于信息查看、分析或者满足数据请求

数据

服务

为所有合适的访问形式提供可信的、高质量的数据。

在内容和内容访问方面,与组织目标相适应,以增量方式交付。

对所需的当前和历史数据提供整合的数据存储,并按照主题域组织数据。

交付数据时,关注如何支持数据治理所发起的决策、政策、流程、定义以及标准等。

整合商务智能处理过程所发现的新数据到数据仓库,使其为进一步分析和商务智能所用。

外部

支撑

要借助其他相关的数据管理职能,如参考数据/主数据/元数据管理、数据治理、数据质量管理,而不重复建设。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值