本文,是为了让大家更好的理解大数据经典架构的补充内容,主要介绍一下数据仓库相关的内容。
数据仓库(Data Warehouse,DW):由两个主要部分构成(一个整合的决策支持数据库 + 一个收集、清洗、转换、存储来自于各种外部数据源数据的相关软件程序),两者结合以支持历史的、分析的和商务智能需求。
企业数据仓库(Enterprise Data Warehouse,EDW):是服务于整个企业商务智能需要的集中式数据仓库。企业数据仓库遵循企业数据模型,使得整个企业范围内的决策支持活动可以保持一致。
一个数据仓库也可能包括若干相关的数据集市,他们都是数据仓库的子集副本
数据仓库活动专注于实现一个历史的业务上下文,包括业务规则,同时保证与元数据存储库交互的流程。
数据仓库活动提供技术解决方案以支持商务智能(BI),“商务智能”是多种业务能力的集合,具体包括:
-
知识工作者执行查询、分析和报表活动,用于监控和了解企业财务运营情况,支持决策制定
-
基于企业操作型数据的战略/运营分析和报表,从而支持业务决策、风险管理、合规管理
-
查询/分析和报表相关的流程和规程
-
商务智能软件工具的细分市场、决策支持系统的同义词、商务智能环境的代名词
数据仓库和商务智能管理的目标:
软件 环境 |
为数据获取、数据管理和数据访问提供稳定、高效、可靠的环境。 提供易于使用的、灵活的和全面的数据访问环境。 定义、构建并维护所有数据存储、数据处理过程,数据基础设施和数据工具,在系统输出后经过整合和精细化处理的数据可以用于信息查看、分析或者满足数据请求 |
数据 服务 |
为所有合适的访问形式提供可信的、高质量的数据。 在内容和内容访问方面,与组织目标相适应,以增量方式交付。 对所需的当前和历史数据提供整合的数据存储,并按照主题域组织数据。 交付数据时,关注如何支持数据治理所发起的决策、政策、流程、定义以及标准等。 整合商务智能处理过程所发现的新数据到数据仓库,使其为进一步分析和商务智能所用。 |
外部 支撑 |
要借助其他相关的数据管理职能,如参考数据/主数据/元数据管理、数据治理、数据质量管理,而不重复建设。 |