机器学习
漓艾初
云计算 资源管理 serverless 多聊聊~
展开
-
机器学习 之 分类与聚类的区别
一、概念分类:通过训练集训练出来一个模型,用于判断新输入数据的类型,而在训练的过程中,一定需要有标签的数据,即训练集本身就带有标签。简单来说,用已知的数据来对未知的数据进行划分。这是一种有监督学习。聚类:对于一组数据,你根本不知道数据之间的关系,不知道他们是否属于同一类,抑或属于不同类别,也不知道到底可以分为多少类。这个时候,我们就需要聚类算法来对数据进行一个关系分析,通过聚类,我们可以把...原创 2019-03-04 21:45:10 · 1697 阅读 · 0 评论 -
机器学习 之 集成学习
一、概念集成学习(ensemble learning) 通过构建并结合多的学习器(个体学习器)来完成学习任务。依据学习器种类是否相同,可分为:同质集成以及异质集成。根据个体学习器的生成方式,集成学习可分为两大类:1.个体学习器之间存在强依赖关系,必须串行生成的序列化方法;2.体学习器之间不存在强依赖关系,可同时生成的并行化方法;二、相关算法1.强依赖关系的:Boosting...原创 2019-03-05 22:02:21 · 200 阅读 · 0 评论 -
机器学习 之 强化学习
一、概念强化学习(RL)是机器学习的一个领域,涉及软件代理应该如何在一个环境中采取行动,以最大化一些累积奖励的概念。由于其一般性,该问题在许多其他学科中进行了研究,例如博弈论,控制理论,运筹学,信息论,基于模拟的优化,多智能体系统,群体智能,统计学和遗传算法。在运筹学和控制文献中,强化学习被称为近似动态规划或神经动态规划。在最优控制理论中也研究了强化学习中存在的问题,其主要关注的是存在和表征。...原创 2019-03-10 16:06:45 · 2296 阅读 · 0 评论 -
机器学习 之 分类与回归的区别
对于机器学习中的分类与回归问题,我总是有点迷糊,但是看了知乎大神们的解答,略有感触。具体链接请看:https://www.zhihu.com/question/21329754下面我简单总结一下分类与回归问题的区别吧:首先引用吴恩达大神的话,Andrew Ng的Machine Learning课程给出的定义:Supervised learning problems are c...原创 2019-03-04 20:38:04 · 2808 阅读 · 0 评论