第六章:支持向量机与决策树(AI小天才:让你轻松掌握机器学习)

链接:AI小天才:让你轻松掌握机器学习

第六章:支持向量机与决策树

支持向量机(Support Vector Machine,简称SVM)和决策树是两种常见的监督学习算法,用于解决分类和回归问题。本章将介绍它们的基本原理、优缺点和应用场景。

1. 支持向量机(SVM)

支持向量机是一种强大的分类算法,其基本思想是通过寻找最优超平面来划分不同类别的样本。在二维空间中,超平面可以看作是一条直线,而在更高维空间中,则是一个超平面。SVM的目标是找到一个最大化间隔(Margin)的超平面,使得样本点距离该超平面的距离最大化。

2. 支持向量机的工作原理

支持向量机的工作原理可以简述为:

  • 对于给定的训练数据,SVM通过构建一个超平面来划分不同类别的样本。
  • SVM尝试最大化训练样本与超平面之间的间隔,同时保证所有样本被正确分类。
  • 在实际应用中,可以使用不同的核函数(如线性核、多项式核、高斯核等)来处理非线性可分的情况。
3. 决策树

决策树是一种基于树形结构的分类和回归算法,其主要思想是通过一系列的决策来对数据进行分类或预测。决策树由节点和边组成,每个内部节点表示一个属性测试,每个叶子节点表示一个类别或一个数值。

4.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百里图书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值