链接:AI小天才:让你轻松掌握机器学习
第六章:支持向量机与决策树
支持向量机(Support Vector Machine,简称SVM)和决策树是两种常见的监督学习算法,用于解决分类和回归问题。本章将介绍它们的基本原理、优缺点和应用场景。
1. 支持向量机(SVM)
支持向量机是一种强大的分类算法,其基本思想是通过寻找最优超平面来划分不同类别的样本。在二维空间中,超平面可以看作是一条直线,而在更高维空间中,则是一个超平面。SVM的目标是找到一个最大化间隔(Margin)的超平面,使得样本点距离该超平面的距离最大化。
2. 支持向量机的工作原理
支持向量机的工作原理可以简述为:
- 对于给定的训练数据,SVM通过构建一个超平面来划分不同类别的样本。
- SVM尝试最大化训练样本与超平面之间的间隔,同时保证所有样本被正确分类。
- 在实际应用中,可以使用不同的核函数(如线性核、多项式核、高斯核等)来处理非线性可分的情况。
3. 决策树
决策树是一种基于树形结构的分类和回归算法,其主要思想是通过一系列的决策来对数据进行分类或预测。决策树由节点和边组成,每个内部节点表示一个属性测试,每个叶子节点表示一个类别或一个数值。