自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 微生物贝叶斯网络推断--Banocc (附代码)

因为组成性数据的变量不是相互独立的,由于相对丰度数据的总和是固定的,当一个成分相对丰度增加时,必然导致至少一个其他成分的相对丰度减少,这种约束关系会产生。模型通过alpha和beta参数来控制lambda从而对对数化的精度矩阵进行稀疏化,使得$$O_{jk}$$ 服从$$laplace(\lambda)$$ 再通过精确矩阵的逆矩阵计算出来协方差矩阵,到这里就是banocc的核心结果了。如果我们直接使用spearman相关性的话,我们可以看到很多特征之间是会存在相关性的,这就是前面所说的伪相关。

2025-11-04 15:49:40 525

原创 Rstudio的代码标题和子标题设置和目录导航技巧

很多人在使用rstudio代码的时候都知道用井号做注释,但是Rstudio在编写脚本的时候可以设置代码标题和或子标题作为目录导航。Rstudio两个地方都有目录导航的窗口。仔细看这些标题和子标题是按照缩进来区分的。具体设置方法一个井号加标题后面加4条杠是以及标题。每个标题或子标题都可以按照这个三角形来进行折叠。两个井号加标题再加4条杠是二级标题....

2025-09-07 10:19:15 383

原创 条件单细胞特异性网络(c-CSN)的度矩阵(c-NDM)计算以及后续分析实战教程(附代码)

我们前面介绍过单细胞特异性网络(CSN)以及网络都矩阵(NDM)计算。我们知道疾病的发生有可能是基因间的调控关系发生改变导致的,不仅仅是基因表达量。单细胞特异性网络(CSN)以及网络都矩阵(NDM)的分析可以考虑到基因间调控关系。但是CSN在计算基因间调控关系的时候仅考虑两个基因间的关系忽略了”第三个“基因的中介作用,比如:CSN计算出来geneX->geneY,但是这可能是由于geneX->geneZ->geneY。X对Y的调控是通过Z传递的。

2025-08-07 17:03:29 2626

原创 通过交叉映射熵推断的单细胞因果网络和转录因子活性(二)<代码演示>

前面介绍的基于邻域交叉映射熵来计算单细胞因果网络以及转录因子活性的计算,今天我们来分享一下具体代码和操作。

2025-08-02 15:01:46 1605

原创 通过交叉映射熵推断的单细胞因果网络和转录因子活性(一)

计算GRN的活性矩阵并对细胞进行降维,根据 GRN 活性矩阵鉴定出 8 种成纤维细胞亚型(下图A、B),计算3个状态的细胞在每个簇里的分布情况(下图C)我们观察到来自 F_c3 的细胞在 PD 状态下高度富集,这表明 F_c3 可能是与耐药性相关的 CAF 亚型。计算每个细胞簇的转录因子活性,发现F_c3 显示出较高的 TWIST1-GRN 活性,Twist1 是上皮-间质转化的重要诱导物,并且与多种上皮癌细胞的不良预后相关(下图E、F)。计算三种患者状态下的肿瘤细胞分布(下图G)。

2025-07-28 16:45:40 982

原创 疾病前期阶段到疾病发生的临界点预测以实现疾病预警(三)<代码演示>

前面介绍的DNB是基于matlab计算的,需要预先下载定义PPI网络。今天来介绍一个基于python写的另一个DNB方法:dnd-tools,这个方法使用比较简单。

2025-07-26 17:12:49 694

原创 单细胞转录组分析结果不好,或许你可以试试细胞特异性网络(CSN)的度矩阵(NDM)(三)<代码演示>

今天分享NDM的另外一个应用方向:1、细胞聚类和细胞亚型识别2、bulk数据的基于基因连通度的生存分析。

2025-07-25 18:03:01 899

原创 疾病前期阶段到疾病发生的临界点预测以实现疾病预警(二)<代码演示>

此外还有另外一个基于python写的DNB的代码:https://colab.research.google.com/github/hiroshi-yamashita/dnb-tools/blob/master/tutorial_dnb_timeseries.ipynb,里面具体原理可以看一下它的文献。到浏览器打开https://cn.string-db.org/cgi/download?数据下载这边用到r语言的GEOquery包,因为下完以后的数据不仅包含基因表达矩阵,还有整理好的临床信息,分组信息等。

2025-07-13 15:25:16 765

原创 疾病前期阶段到疾病发生的临界点预测以实现疾病预警(一)

简单来说就是在参考样本中加入一个目标个体后计算基因相关性矩阵,然后再与没有目标样本的基因相关性矩阵对比,看哪个连边显著改变,并计算统计量评估,最后计算出来单样本网络(single sample network,SSN)。目前对于疾病发生临界点预测的方法越来越多,但是他们的共识是一样的在疾病前期或者疾病发生之间的基因相互关系会发生严重波动。疾病进展常常表现出时间模式的突变,在动态系统中可描述为随时间变化的非线性过程,其中状态的突然恶化表示在分岔点发生的质的转变。在对所有基因的得分进行排序后,可以将前。

2025-07-10 21:39:45 1794

原创 单细胞转录组分析结果不好,或许你可以试试细胞特异性网络(CSN)的度矩阵(NDM)(二)代码演示

前文提到的另一种的转录组研究方法,在单细胞转录组和bulk转录组数据中均展现出独特优势,作为传统差异表达分析的有益补充。。从网络的视角出发,有助于识别那些在表达量上不显著、却在调控网络中发挥关键作用的“”(dark genes),为潜在功能基因的挖掘提供了全新的研究思路。今天就来讲讲代码演示部分。

2025-07-08 18:06:40 991

原创 单细胞转录组分析结果不好,或许你可以试试细胞特异性网络(CSN)的度矩阵(NDM)(一)

简单来讲就是每个细胞都有一个基因互作的网络(下面这张图代表的是每个细胞里的基因互作网络,各不相同)网络构建大多方法是基于相关性,而相关性的方法需要多个样本(多个细胞)的基因表达才能计算。那像它这种每个细胞一个网络怎么做的?

2025-07-07 16:41:46 518

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除