这道题和poj2778类似都需要利用end数组和next数组的特性构建状态数组,不过这里是需要经过至少一个目标串,而且长度是不小于L的,即需要长度为1~L时的种数和。然后我们可以求出总数后减去不经过目标串的和,剩下的就是我们要的答案。设总数的数组为f[n],当n为1时答案为26,n为2时为26+26^2,即f[n]=(f[n-1]+1)*26;由于n等于L小于2^31,所以一样用矩阵快速幂求出再减去不经过目标串的1~L的和。而这个和可以在矩阵上再增加一维就可以解决和的问题了。代码如下
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
const int MOD=100000;
struct Matrix
{
unsigned long long mat[40][40];
int n;
Matrix(){}
Matrix(int _n)
{
n=_n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
mat[i][j] = 0;
}
Matrix operator *(const Matrix &b)const
{
Matrix ret = Matrix(n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
ret.mat[i][j]+=mat[i][k]*b.mat[k][j];
return ret;
}
};
Matrix pow_M(Matrix a,int n)
{
Matrix ret = Matrix(a.n);
for(int i=0;i<a.n;i++)
ret.mat[i][i] = 1;
Matrix tmp = a;
while(n)
{
if(n&1)ret=ret*tmp;
tmp=tmp*tmp;
n>>=1;
}
return ret;
}
struct Tree
{
int next[210][26],fail[210],end[210];
int root,L;
int newnode()
{
for(int i=0;i<128;i++)
next[L][i]=-1;
end[L++]=0;
return L-1;
}
void init()
{
L=0;
root=newnode();
}
int judge(char c)
{
return c-'a';
}
void insert(char *s)
{
int len=strlen(s);
int p=root;
for(int i=0;i<len;i++)
{
int id=judge(s[i]);
if(next[p][id]==-1)
next[p][id]=newnode();
p=next[p][id];
}
end[p]++;
}
void build()
{
queue<int>q;
int p=root;
fail[root]=root;
for(int i=0;i<26;i++)
{
if(next[p][i]==-1)
next[p][i]=root;
else
{
fail[next[p][i]]=root;
q.push(next[p][i]);
}
}
while(!q.empty())
{
p=q.front();
q.pop();
if(end[fail[p]]) end[p]=1;
for(int i=0;i<26;i++)
{
if(next[p][i]==-1)
{
next[p][i]=next[fail[p]][i];
}
else
{
fail[next[p][i]]=next[fail[p]][i];
q.push(next[p][i]);
}
}
}
}
int used[1010];
void query(char *s,int n)
{
int len=strlen(s);
int p=root;
bool flag=false;
memset(used,0,sizeof(used));
for(int i=0;i<len;i++)
{
int id=s[i];
p=next[p][id];
int temp=p;
while(temp!=root)
{
if(end[temp]!=-1)
{
used[end[temp]]++;
flag=true;
}
temp=fail[temp];
}
}
}
Matrix getMatrix()
{
Matrix ret = Matrix(L+1);
for(int i=0;i<L;i++)
for(int j=0;j<26;j++)
if(!end[i]&&!end[next[i][j]])
ret.mat[i][next[i][j]]++;
for(int i=0;i<L+1;i++)
ret.mat[i][L]=1;
return ret;
}
void debug()
{
for(int i=0;i<L;i++)
{
printf("id = %3d,fail = %3d,end = %3d,chi = [",i,fail[i],end[i]);
for(int j=0;j<26;j++)
printf("%2d",next[i][j]);
printf("]\n");
}
}
};
Tree ac;
char str[20];
int main()
{
int n,L;
while(~scanf("%d %d",&n,&L))
{
ac.init();
for(int i=1;i<=n;i++)
{
scanf("%s",str);
ac.insert(str);
}
ac.build();
Matrix a=ac.getMatrix();
a=pow_M(a,L);
Matrix b(2);
b.mat[0][0]=26;
b.mat[1][1]=b.mat[1][0]=1;
b=pow_M(b,L);
unsigned long long ans=0,res=0;
res+=b.mat[0][0]+b.mat[1][0];
for(int i=0;i<ac.L+1;i++)
{
ans+=a.mat[0][i];
}
cout<<res-ans<<endl;
}
}