1198A MP3(前缀和)

这篇博客讨论了如何在一个给定空间限制下,通过数组操作来最小化不同数字存储空间的调整。作者提出了一种策略,利用log2K向上取整的位数来分配存储,并通过区间扫描和前缀和计算找到最小更改数。关键点包括空间分配、计数数组和动态范围优化。
摘要由CSDN通过智能技术生成

题目

题意:给一个由n个数字组成的数组,和我们的空间大小I bytes转化为bits即为8*I,该数组有K个不同的数字,对于每个数字我们需要用log 2 K(向上取整)bits的空间存储,现在我们有一个操作,给出一个L和R,可以使数组中小于L的元素变为L,大于R的元素变为R。问:经过了操作后,我们要使得满足存储的最小改变数字个数。

思路:我们可以给每个数字分配的空间为8I/n,所以我们可以保有的最大不同数字个数为K0=pow(2,I8/n(向下取整)),然后用一个map记录各个数的数量,求一个从小到大数量前缀和。从开始遍历,每次取区间长度为K0,找出范围为K0的最大和,最后答案:为全部的不同个数-前面求到的K0最大范围值。细节见代码。

#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<iomanip>
#define pii pair<int,int>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
const int Max = 2e6 + 5;
int lst[Max];
int Mod = 1e9 + 7;
int ls[Max];
ll sum[Max];
int main()
{
	FAST;
	ll n, m;cin >> n >> m;
	map<int, int> ma;
	for (int i = 1;i <= n;i++)
	{
		cin >> lst[i];ma[lst[i]]++;
	}
	int g = 0;ll ss = 0;
	for (auto i = ma.begin();i != ma.end();i++)
	{
		ls[++g] = i->second;
		sum[g] = sum[g - 1] + i->second;
		ss += i->second;
	}
	m *= 8;
	m /= n;
	if (m >= 32)m = 2e9 + 5;
	else m = pow(2, m);
	ll ans = 1e9;
	if (m >= g||g==1)cout << 0 << endl;
	else
	{

		for (int i = 0;i + m <= g;i++)
		{
			ans = min(ans, ss - (sum[i + m] - sum[i]));
		}
		cout << ans << endl;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Rikka_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值