题意:给一个由n个数字组成的数组,和我们的空间大小I bytes转化为bits即为8*I,该数组有K个不同的数字,对于每个数字我们需要用log 2 K(向上取整)bits的空间存储,现在我们有一个操作,给出一个L和R,可以使数组中小于L的元素变为L,大于R的元素变为R。问:经过了操作后,我们要使得满足存储的最小改变数字个数。
思路:我们可以给每个数字分配的空间为8I/n,所以我们可以保有的最大不同数字个数为K0=pow(2,I8/n(向下取整)),然后用一个map记录各个数的数量,求一个从小到大数量前缀和。从开始遍历,每次取区间长度为K0,找出范围为K0的最大和,最后答案:为全部的不同个数-前面求到的K0最大范围值。细节见代码。
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<iomanip>
#define pii pair<int,int>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
const int Max = 2e6 + 5;
int lst[Max];
int Mod = 1e9 + 7;
int ls[Max];
ll sum[Max];
int main()
{
FAST;
ll n, m;cin >> n >> m;
map<int, int> ma;
for (int i = 1;i <= n;i++)
{
cin >> lst[i];ma[lst[i]]++;
}
int g = 0;ll ss = 0;
for (auto i = ma.begin();i != ma.end();i++)
{
ls[++g] = i->second;
sum[g] = sum[g - 1] + i->second;
ss += i->second;
}
m *= 8;
m /= n;
if (m >= 32)m = 2e9 + 5;
else m = pow(2, m);
ll ans = 1e9;
if (m >= g||g==1)cout << 0 << endl;
else
{
for (int i = 0;i + m <= g;i++)
{
ans = min(ans, ss - (sum[i + m] - sum[i]));
}
cout << ans << endl;
}
}