思路:对于两个二进制数f(x,y)=x|y-y 举两个例子 x 11101 y 10100 f(x,y)=01001 x 111111 y 1010 f(x,y)=110101 我们可以发现f(x,y)结果就是将y中的对应二进制为一的地方如果x中相对应的也为1则将x相应位置变为0,剩下的x就是结果。而对于一个序列我们将对序列第一个元素进行(n-1)次这种“相减”运算,可以发现对于一个序列我们只要确定了第一个元素的值,其他后面的元素无论怎样排序结果都相同。如此我们只需先将每个元素所有位的二进制数存储一遍求个总和,如果存储的某位上>=2,则必有两个元素都有在这个位上是1,最终结果在此位上会相减为0。所以只有某个位是1,才能够保存下来,那么我们只需找到存储中最大的位上是1的元素即可(由二进制的性质所有后面的位数相加的值不可能比前面的大),细节见代码。
Code:
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<bitset>
#define pii pair<int,int>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
const int Max = 1e6 + 5;
int lst[Max];
int Mod = 1e9 + 7;
int main()
{
FAST;
int n;cin >> n;
map<int, int> ma;
for (int i = 1;i <= n;i++)
{
int g, t = 0;cin >> g;lst[i] = g;
while (g)
{
if (g % 2)ma[t]++;
g /= 2;t++;
}
}
int f = -1;
for (int i = 35;i >= 0;i--)if (ma[i] == 1) {
f = i;break;
}
if (f == -1)for (int i = 1;i <= n;i++)cout << lst[i] << " ";
else
{
int q=0;
for (int i = 1;i <= n;i++)
{
int g = lst[i], t = 0;
while (g)
{
if (g % 2==1 && t == f)
{
q = i;break;
}
g /= 2;t++;
}
if (q)break;
}
int k = lst[1];lst[1] = lst[q];lst[q] = k;
for (int i = 1;i <= n;i++)cout << lst[i] << " ";
}
cout << endl;
}